Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2748: 85-98, 2024.
Article in English | MEDLINE | ID: mdl-38070109

ABSTRACT

Immunotherapy is considered a powerful clinical strategy aiming to boost the immune system to fight cancer. In this context, nanomaterials (NMs) are uniquely suited to improve the development and the broad implementation of cancer immunotherapies by overcoming several challenges. In fact, NMs can be rationally designed to navigate complex physical barriers, respond to tumor microenvironments, and enhance/modulate immune system activation. Here, we present a method to prepare stimuli-responsive biocompatible nanoparticles (NPs) able to target the tumor microenvironment. Moreover, we describe protocols to characterize the physical-chemical properties of NPs as well as to evaluate their biocompatibility and therapeutic potential in vitro on three-dimensional (3D) tumor spheroids.


Subject(s)
Nanoparticles , Neoplasms , Humans , Tumor Microenvironment , Nanoparticles/chemistry , Drug Delivery Systems , Neoplasms/pathology , Drug Carriers/chemistry , Immunotherapy
2.
Nanomaterials (Basel) ; 13(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446515

ABSTRACT

To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood-brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs' different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method. The results indicate that the intracellular behavior of NPs changed as a function of their entrance mechanism. Moreover, by bypassing endo-lysosomal accumulation, free NPs were released from cells more efficiently than endocytosed NPs. Most importantly, once excreted by the endothelial cells, free NPs were released in the cell culture medium as aggregates smaller than endocytosed NPs and, consequently, they entered the human glioblastoma U87 cells more efficiently. These findings prove that intracellular localization influences NPs' long-term fate, improving their cellular release and consequent cellular uptake once in the brain parenchyma. This study represents a step forward in designing nanomaterials that are able to reach the brain effectively.

3.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850620

ABSTRACT

In this contribution we report the synthesis and full characterization, via a combination of different spectroscopies (e.g., 1H NMR, UV-vis, fluorescence, MALDI), of a new family of fluorescent zinc complexes with extended π-conjugated systems, with the final aim of setting up higher performance H2S sensing devices. Immobilization of the systems into a polymeric matrix for use in a solid-state portable device was also explored. The results provided proof-of-principle that the title complexes could be successfully implemented in a fast, simple and cost-effective H2S sensing device.

4.
ACS Appl Mater Interfaces ; 15(3): 3882-3893, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36629473

ABSTRACT

The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.


Subject(s)
Antioxidants , Metal Nanoparticles , Humans , Antioxidants/pharmacology , Platinum/pharmacology , Signal Transduction , Mitochondria/metabolism
5.
Sensors (Basel) ; 22(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35590862

ABSTRACT

In this work, the authors explored the interaction of a suite of fluorescent zinc complexes with H2S. The authors provide evidence that HS- binds the zinc center of all the complexes under investigation, allowing them to possibly function as sensors by a 'coordinative-based' approach. Naked-eye color changes occur when treating the systems with HS-, so the fluorescence responses are modulated by the presence of HS-, which has been related to a change in the energy level and coupling of excited states through a computational study. The results show the potential of the systems to function as HS-/H2S colorimetric and fluorescent sensors. Paper-strip-based sensing experiments foresee the potential of using this family of complexes as chemosensors of HS- in more complex biological fluids.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Colorimetry/methods , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...