Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(4): e1012005, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662764

ABSTRACT

Myosin motors use the energy of ATP to produce force and directed movement on actin by a swing of the lever-arm. ATP is hydrolysed during the off-actin re-priming transition termed recovery stroke. To provide an understanding of chemo-mechanical transduction by myosin, it is critical to determine how the reverse swing of the lever-arm and ATP hydrolysis are coupled. Previous studies concluded that the recovery stroke of myosin II is initiated by closure of the Switch II loop in the nucleotide-binding site. Recently, we proposed that the recovery stroke of myosin VI starts with the spontaneous re-priming of the converter domain to a putative pre-transition state (PTS) intermediate that precedes Switch II closing and ATPase activation. Here, we investigate the transition from the pre-recovery, post-rigor (PR) state to PTS in myosin VI using geometric free energy simulations and the string method. First, our calculations rediscover the PTS state agnostically and show that it is accessible from PR via a low free energy transition path. Second, separate path calculations using the string method illuminate the mechanism of the PR to PTS transition with atomic resolution. In this mechanism, the initiating event is a large movement of the converter/lever-arm region that triggers rearrangements in the Relay-SH1 region and the formation of the kink in the Relay helix with no coupling to the active site. Analysis of the free-energy barriers along the path suggests that the converter-initiated mechanism is much faster than the one initiated by Switch II closure, which supports the biological relevance of PTS as a major on-pathway intermediate of the recovery stroke in myosin VI. Our analysis suggests that lever-arm re-priming and ATP hydrolysis are only weakly coupled, so that the myosin recovery stroke is initiated by thermal fluctuations and stabilised by nucleotide consumption via a ratchet-like mechanism.


Subject(s)
Computational Biology , Molecular Dynamics Simulation , Myosin Heavy Chains , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Binding Sites , Computational Biology/methods , Hydrolysis , Models, Molecular , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Protein Conformation , Thermodynamics
2.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38451940

ABSTRACT

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Protons , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Conformation , Adenosine Triphosphate , Rotation , Proton-Translocating ATPases/metabolism
3.
Nat Struct Mol Biol ; 30(11): 1774-1785, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749275

ABSTRACT

The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. The mechanisms underlying Pi release from the core and barbed end of actin filaments remain unclear. Here, using human and bovine actin isoforms, we combine cryo-EM with molecular-dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a 'molecular backdoor'. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and opens only transiently through concerted amino acid rearrangements. This explains why Pi escapes rapidly from the filament end but slowly from internal subunits. In a nemaline-myopathy-associated actin variant, the backdoor is predominantly open in filament-core subunits, resulting in accelerated Pi release and filaments with drastically shortened ADP-Pi caps. Our results provide the molecular basis for Pi release from actin and exemplify how a disease-linked mutation distorts the nucleotide-state distribution and atomic structure of the filament.


Subject(s)
Actins , Phosphates , Animals , Cattle , Humans , Actins/metabolism , Phosphates/metabolism , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Adenosine Diphosphate/metabolism
4.
PLoS Comput Biol ; 19(1): e1010822, 2023 01.
Article in English | MEDLINE | ID: mdl-36693110

ABSTRACT

The steady emergence of SARS-CoV-2 variants gives us a real-time view of the interplay between viral evolution and the host immune defense. The spike protein of SARS-CoV-2 is the primary target of antibodies. Here, we show that steric accessibility to antibodies provides a strong predictor of mutation activity in the spike protein of SARS-CoV-2 variants, including Omicron. We introduce an antibody accessibility score (AAS) that accounts for the steric shielding effect of glycans at the surface of spike. We find that high values of the AAS correlate strongly with the sites of mutations in the spike proteins of newly emerging SARS-CoV-2 variants. We use the AAS to assess the escapability of variant spike proteins, i.e., their ability to escape antibody-based immune responses. The high calculated escapability of the Omicron variant BA.5 with respect to both wild-type (WT) vaccination and BA.1 infection is consistent with its rapid spread despite high rates of vaccination and prior infection with earlier variants. We calculated the AAS from structural and molecular dynamics simulation data that were available early in the pandemic, in the spring of 2020. The AAS thus allows us to prospectively assess the ability of variant spike proteins to escape antibody-based immune responses and to pinpoint regions of expected mutation activity in future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies , Mutation , Antibodies, Viral , Antibodies, Neutralizing
5.
PLoS Comput Biol ; 17(4): e1008790, 2021 04.
Article in English | MEDLINE | ID: mdl-33793546

ABSTRACT

The primary immunological target of COVID-19 vaccines is the SARS-CoV-2 spike (S) protein. S is exposed on the viral surface and mediates viral entry into the host cell. To identify possible antibody binding sites, we performed multi-microsecond molecular dynamics simulations of a 4.1 million atom system containing a patch of viral membrane with four full-length, fully glycosylated and palmitoylated S proteins. By mapping steric accessibility, structural rigidity, sequence conservation, and generic antibody binding signatures, we recover known epitopes on S and reveal promising epitope candidates for structure-based vaccine design. We find that the extensive and inherently flexible glycan coat shields a surface area larger than expected from static structures, highlighting the importance of structural dynamics. The protective glycan shield and the high flexibility of its hinges give the stalk overall low epitope scores. Our computational epitope-mapping procedure is general and should thus prove useful for other viral envelope proteins whose structures have been characterized.


Subject(s)
Computational Biology , Epitope Mapping/methods , Epitopes/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites, Antibody , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes/immunology , Immunogenicity, Vaccine , Protein Conformation , Spike Glycoprotein, Coronavirus/immunology
6.
J Phys Chem Lett ; 12(13): 3260-3265, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33764764

ABSTRACT

The design of molecular architectures exhibiting functional motions is a promising area for disruptive technological development. Toward this goal, rotaxanes and catenanes, which undergo relative motions of their subunits in response to external stimuli, are prime candidates. Here, we report on the computational analysis of the contraction/extension of a bistable [c2]daisy chain rotaxane. Using free-energy calculations and transition path optimizations, we explore the free-energy landscape governing the functional motions of a prototypical molecular machine with atomic resolution. The calculations reveal a sequential mechanism in which the asynchronous gliding of each ring is preferred over the concerted movement. Analysis of the underlying free-energy surface indicates that the formation of partially rearranged intermediates entails crossing of much smaller barriers. Our findings illustrate an important design principle for molecular machines, namely that efficient exploitation of thermal fluctuations may be realized by breaking down the large-scale functional motions into smaller steps.

7.
Science ; 370(6513): 203-208, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32817270

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the primary focus for vaccine development. In this study, we combined cryo-electron tomography, subtomogram averaging, and molecular dynamics simulations to structurally analyze S in situ. Compared with the recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed prefusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and potentially to the development of safe vaccines.


Subject(s)
Betacoronavirus/chemistry , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/chemistry , Cryoelectron Microscopy , Electron Microscope Tomography , Glycosylation , Humans , Protein Domains , Protein Multimerization , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 115(24): 6213-6218, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844196

ABSTRACT

Myosins form a class of actin-based, ATPase motor proteins that mediate important cellular functions such as cargo transport and cell motility. Their functional cycle involves two large-scale swings of the lever arm: the force-generating powerstroke, which takes place on actin, and the recovery stroke during which the lever arm is reprimed into an armed configuration. Previous analyses of the prerecovery (postrigor) and postrecovery (prepowerstroke) states predicted that closure of switch II in the ATP binding site precedes the movement of the converter and the lever arm. Here, we report on a crystal structure of myosin VI, called pretransition state (PTS), which was solved at 2.2 Å resolution. Structural analysis and all-atom molecular dynamics simulations are consistent with PTS being an intermediate along the recovery stroke, where the Relay/SH1 elements adopt a postrecovery conformation, and switch II remains open. In this state, the converter appears to be largely uncoupled from the motor domain and explores an ensemble of partially reprimed configurations through extensive, reversible fluctuations. Moreover, we found that the free energy cost of hydrogen-bonding switch II to ATP is lowered by more than 10 kcal/mol compared with the prerecovery state. These results support the conclusion that closing of switch II does not initiate the recovery stroke transition in myosin VI. Rather, they suggest a mechanism in which lever arm repriming would be mostly driven by thermal fluctuations and eventually stabilized by the switch II interaction with the nucleotide in a ratchet-like fashion.


Subject(s)
Myosin Heavy Chains/chemistry , Myosin Heavy Chains/metabolism , Animals , Crystallography, X-Ray , Molecular Dynamics Simulation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Swine , Thermodynamics
9.
Nat Commun ; 7: 12456, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27580874

ABSTRACT

Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles.


Subject(s)
Actin Cytoskeleton/metabolism , Myosins/metabolism , Myosins/ultrastructure , Pseudopodia/metabolism , Animals , Cattle , Cell Membrane/physiology , Crystallography, X-Ray , Dimerization , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
10.
Proc Natl Acad Sci U S A ; 113(21): E2906-15, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27166421

ABSTRACT

Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.


Subject(s)
Dictyostelium , Evolution, Molecular , Myosins , Protozoan Proteins , Dictyostelium/chemistry , Dictyostelium/genetics , Dictyostelium/metabolism , Humans , Myosins/chemistry , Myosins/genetics , Myosins/metabolism , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...