Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190513, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892733

ABSTRACT

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Carbon Cycle , Carbon Dioxide/analysis , Droughts , Ecosystem , Europe
2.
Biochem Cell Biol ; 68(1): 238-42, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2350491

ABSTRACT

The process of adipose differentiation uniquely endows fat cells to accrue triacylglycerols under conditions of nutrient energy surfeit and to release fatty acids during energy deprivation. The object of this investigation was to study influences on this process in perirenal preadipocytes, grown in primary culture or first subculture and derived from male Sprague-Dawley rats, 180-200 g. Supplementation of the culture medium with 1-methyl-3-isobutylxanthine, corticosterone, and insulin induced differentiation in practically all perirenal preadipocytes, as indicated morphologically and by rising glycerophosphate dehydrogenase activity. Appreciable differentiation was induced even in the absence of methylisobutylxanthine. Transforming growth factor beta (1-1000 pM), cachectin (tumour necrosis factor alpha) (1-1000 pM), and basic fibroblast growth factor (0.063-63 nM) inhibited adipose differentiation significantly, almost completely at the higher concentrations. Direct inhibition, rather than a persisting mitogenic effect of fibroblast growth factor, was confirmed using demecolcine (Colcemid). The fact that transforming growth factor beta and cachectin inhibit differentiation in preadipocytes from postpubertal rats suggests that this effect probably also occurs in vivo, thus diverting energy from adipose depots in certain neoplastic and inflammatory states. We propose that the anterior pituitary, through fibroblast growth factor(s), modulates the pool of preadipocytes and other mesenchymal cells. The mitogenic effect would be complemented by a concerted function, inhibition of adipose differentiation, resulting in the retention of a greater number of potentially replicative cells. Then, depending on the subject's nutritional and endocrine status, extrapituitary factors would regulate the specific process of differentiation.


Subject(s)
Adipose Tissue/cytology , Stem Cells/cytology , Adipose Tissue/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Fibroblast Growth Factors/pharmacology , Kidney , Male , Rats , Rats, Inbred Strains , Stem Cells/drug effects , Transforming Growth Factors/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
3.
J Clin Invest ; 81(5): 1639-45, 1988 May.
Article in English | MEDLINE | ID: mdl-3366910

ABSTRACT

To learn about adipose differentiation of precursors from postnatal adipose tissue of lean and massively obese subjects, human omental adipocyte precursor-murine renal adenocarcinoma cell (RAG) hybrids were formed by fusion with polyethylene glycol, and cultured selectively with 50 microM ouabain in hypoxanthine aminopterin thymidine (HAT) medium. Under conditions in which the parent cells did not differentiate, a number of hybrids, which were cloned, revealed morphologic and biochemical evidence of differentiation. In addition to activation of human genes within the common nucleus of the hybrids, murine cytoplasmic activators are probably also involved because heterocaryons (fused cells with two interspecific nuclei) revealed the same phenomenon. Hybrids composed of precursors from massively obese subjects disclosed more frequent and prominent differentiation. Since these hybrids, in contrast to those from the lean, recapitulate this phenomenon in subcultures, they provide the potential system for mapping the human gene(s) responsible for adipose differentiation and its exaggeration in massive obesity.


Subject(s)
Adipose Tissue/pathology , Hybrid Cells/pathology , Obesity, Morbid/pathology , Triglycerides/biosynthesis , Adipose Tissue/enzymology , Animals , Cell Differentiation , Cell Fusion , Clone Cells , Glycerolphosphate Dehydrogenase/analysis , Humans , Hybrid Cells/enzymology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...