Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 20(14): 9198-9210, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29560996

ABSTRACT

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (phosphate-buffered saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2 + N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO˙ radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2 + N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to realize an effective control of plasma-air interactions.

2.
Phys Chem Chem Phys ; 18(43): 29999-30008, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27774564

ABSTRACT

The arrangement of an ionic fluorophore in the crystalline state was regulated by the presence of various counter-ions and the effect on spectroscopic and self-association properties was studied. To do so, nine salts of berberine (i.e. a fluorescent natural alkaloid) were investigated. Most of them contained organic anions and were prepared using an ion-exchange process. Berberine chloride and hemisulfate were also used for the sake of comparison. The diffuse reflectance and photoluminescence spectra were recorded on powder compounds. All salts were emissive in the solid state and the emission efficiency was increased seven-fold with the nature of the anion. The optical properties were tentatively discussed on the basis of the crystal-packing mode. The possibility of implementing a bottom-up approach to generate microparticles was investigated using the reprecipitation method. Salts that contain the most hydrophobic anions gave a large number of homogeneous, elongated microparticles. This study showed that most of the berberine salts could be used as fluorescent materials, but proper choice of the anion allows using the self-association properties to best advantage.

3.
Macromol Rapid Commun ; 36(16): 1486-91, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26033431

ABSTRACT

The functionalization of zinc oxide (ZnO) nanoparticles by poly(3-hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo-addition "click chemistry." Herein, the direct coupling of an azide modified catechol derivative with an alkyne end-functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.


Subject(s)
Biomimetics , Nanoparticles/chemistry , Thiophenes/chemistry , Zinc Oxide/chemistry , Click Chemistry
4.
Photochem Photobiol ; 90(2): 358-68, 2014.
Article in English | MEDLINE | ID: mdl-24033260

ABSTRACT

Various photosensitizers were grafted by conventional peptide coupling methods to functionalized silica with several macroscopic shapes (powders, films) or embedded in highly transparent and microporous silica xerogel monoliths. Owing to the transparency and free-standing shape of the monoliths, the transient species arising from irradiation of the PSs could be analyzed and were not strikingly different from those observed in solutions. The observed reactivity for either liquid-solid (α-terpinene oxygenation vs dehydrogenation) or gas-solid (dimethylsulfide, DMS, solvent-free oxidation) reactions was consistent with the properties of the excited states of the PSs under consideration. Immobilized anthraquinone-derived materials preferentially react in both cases by electron transfer from the substrate to the triplet state of the sensitizer, in spite of an efficient singlet oxygen production. The recently developed 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, DBTP-COOH, efficiently reacts via energy transfer to yield singlet oxygen from its triplet state. It was shown to perform better than 9,10-dicyanoanthracene and rose bengal for DMS oxidation and α-terpinene photooxygenation to ascaridole, respectively. Thus, by a proper choice of the organic immobilized photocatalyst, it is possible to develop efficient and reusable materials, activated under visible light, for various applications and to tune the reaction pathway, opening the way to green oxidation processes.


Subject(s)
Light , Organic Chemicals/chemistry , Photosensitizing Agents/chemistry , Cyclohexane Monoterpenes , Microscopy, Electron, Transmission , Monoterpenes/chemistry , Oxidation-Reduction , Silicon Dioxide/chemistry , X-Ray Diffraction
5.
ACS Appl Mater Interfaces ; 6(1): 275-88, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24304089

ABSTRACT

The photophysical properties of several photosensitizers (PSs) included or grafted in silica monoliths were compared to their properties in solution. The effects of the solid support on their steady-state and transient absorption spectra, on their quantum yields of singlet oxygen ((1)O2) production, and on their ability to photoinduce the oxidation of dimethylsulfide (DMS) were investigated. Two cyanoanthracene derivatives (9,14-dicyanobenzo[b]triphenylene, DBTP, and 9,10-dicyanoanthracene, DCA), as well as three phenothiazine dyes (methylene blue, MB(+), new methylene blue, NMB(+), methylene violet, MV), were encapsulated in silica, analyzed and compared to two reference PSs (perinaphthenone, PN and rose bengal, RB). A DBTP derivative (3-[N-(N″-triethoxysilylpropyl-N'-hexylurea)]carboxamido-9,14-dicyanobenzo[b]triphenylene, 3) was also prepared and grafted onto silica. Thanks to the transparency and the free-standing shape of the monoliths, the complete spectroscopic characterization of the supported PSs was carried out directly at the gas-solid interface. The influence of the silica network, the PS, and the adsorption/grafting link between the PS and silica was investigated. The effects of PS concentration, gaseous atmosphere, humidity, and hydrophobicity on the production of (1)O2 were analyzed. With all PSs, (1)O2 production was very efficient (quantum yields of (1)O2 production, relative to PN, between 0.6 and 1), and this species was the only one involved in the pollutant photooxidation. The influence of the matrix on the PSs' photophysics could be considered as negligible. In contrast, the matrix effect on DMS photooxidation was extremely important: the gas diffusion inside the porous structure, and thus, the photoactivity of the materials, strictly depended on silica's surface area and porosity. Our results highlight the suitability of these silica structures as inert supports for the study of the photosensitizing properties at the gas-solid interface. Moreover, thanks to the adsorption properties of the matrix, the synthesized materials can be used as microphotoreactor for the (1)O2-mediated oxidation of volatile pollutants.

6.
Photochem Photobiol Sci ; 12(12): 2160-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24114181

ABSTRACT

New methylene blue (NMB+) and methylene violet (MV) are known for their photosensitizing properties for singlet oxygen ((1)O2) generation upon visible-light irradiation, and various examples of their use in the photodynamic inactivation of microorganisms and for photomedicinal purposes have been reported. However, their photophysical properties have never been extensively and systematically analyzed and compared. In the current work, we studied their absorption and fluorescence behavior relative to their parent compound, methylene blue (MB+), detected the transient species generated upon excitation of the photosensitizers and determined their quantum yields of singlet oxygen production. We could measure very high quantum yields of singlet oxygen production for all the studied compounds. NMB+ appeared similar to MB+, even though it produces (1)O2 much more efficiently, and was slightly influenced by the solvent. MV, in contrast, was much more sensitive to the chemical environment, and the transient species formed upon irradiation were different in methanol and acetonitrile. It appeared to be a very good singlet oxygen sensitizer, but the influence of the chemical environment should be carefully considered for any application. The comparative characterization of these sensitizers will represent a support for the determination and the understanding of the photochemical mechanisms occurring by using these phenothiazine dyes for various photobiological applications.

7.
Phys Chem Chem Phys ; 15(40): 17219-32, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24013434

ABSTRACT

In order to graft cyanoaromatic molecules onto various inert supports, we designed two new cyanoanthracene derivatives of benzo[b]triphenylene-9,14-dicarbonitrile (DBTP, 1), which already demonstrated good photosensitizing properties. We synthesized 3-(N-hydroxypropyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 3 and 3-(N-N0-Boc-aminohexyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 4 and compared their photophysical properties in acetonitrile relative to those of the parent compound 1 and its carboxylic derivative 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, 2. The transient species were analysed and the quantum yields of singlet oxygen production (ΦΔ) determined in acetonitrile. The effect of chemical functionalization can be considered negligible, since absorption spectra, fluorescence emission spectra and fluorescence lifetimes do not significantly change with the substituent. The triplet-triplet absorption spectra and the triplet excited state lifetimes are similar for the whole series. For compounds 1-4 high values of ΦΔ, close to that of the standard sensitizer 1H-phenalen-1-one (PN, ΦΔ ≈ 1), and higher than that of the well-known photosensitizer 9,10-dicyanoanthracene (DCA), are due to very efficient intersystem crossing from the singlet to the triplet excited state and subsequent energy transfer to ground state oxygen ((3)O2). They belong to a class of very efficient photosensitizers, absorbing visible light and stable under irradiation, they may be functionalized without significant changes to their photophysical behaviour, and grafted onto various supports.

8.
J Hazard Mater ; 211-212: 266-74, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22019105

ABSTRACT

Transparent and porous silica xerogels containing various grafted photosensitizers (PSs) such as anthraquinone derivatives, Neutral Red, Acridine Yellow and a laboratory-made dicyano aromatics (DBTP) were prepared. In most cases, the xerogels were shown to be mainly microporous by porosimetry. The PSs were characterized in the powdered monoliths (form, aggregation, concentration) by electronic spectroscopy which also proved to be a useful tool for monitoring the material evolution after irradiation. These nanoporous xerogels were used as microreactors for gas/solid solvent-free photo-oxygenation of dimethylsulfide (DMS) using visible light and air as the sole reactant. All these PSs containing monoliths were efficient for gas-solid DMS oxidation, leading to sulfoxide and sulfone in varying ratios. As these polar oxidation products remained strongly adsorbed on the silica matrix, the gaseous flow at the outlet of the reactor was totally free of sulfide and odorless. The best results in term of yield and initial rate of degradation of DMS were obtained with DBTP containing xerogels. Moreover, as these materials were reusable without loss of efficiency and sensitizer photobleaching after a washing regeneration step, the concept of recyclable sensitizing materials was approved, opening the way to green process.


Subject(s)
Photosensitizing Agents/chemistry , Silicon Dioxide/chemistry , Sulfides/chemistry , Air , Aminoacridines/chemistry , Anthraquinones/chemistry , Light , Nanoparticles/chemistry , Neutral Red/chemistry , Oxidation-Reduction , Photolysis , Porosity , Sulfides/radiation effects
9.
Appl Spectrosc ; 64(10): 1131-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20925983

ABSTRACT

The durability of an organic color and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidizing conditions, using Raman and ultraviolet-visible (UV-Vis) spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In the absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo molecule is the key factor. The evidence for the high color stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment.

10.
Phys Chem Chem Phys ; 12(37): 11280-90, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20661499

ABSTRACT

The cyanoanthracene derivative, benzo[b]triphenylene-9,14-dicarbonitrile (1) can be prepared readily with a graftable function while maintaining (1)O(2) photosensitizing properties comparable to those of the standard compound 9,10-dicyanoanthracene (DCA). In view of the high potential of the derivatives of 1 for photooxidation reactions under heterogeneous conditions, we compared the photophysical properties of 1 in solution with those of DCA. In pursuing the comparison of 1 and DCA, we observed small but significant changes of the vibronic bands in the electronic absorption spectra of DCA in different solvents, which were well correlated with solvent polarity, similar to the pyrene polarity scale. The main difference between 1 and DCA is in the emission properties: we observed a much stronger sensitivity of the fluorescence emission spectrum to the electron-donating ability of the solvent than for DCA. The emission spectrum of 1 is in general structureless with a large Stokes shift. The ability of the singlet state of 1 to participate in charge transfer interactions with electron-donating solvents is proposed to account for these results. It makes 1 a highly sensitive probe to the surrounding medium. Reversible reduction was observed for both photosensitizers, with a small shift to more negative potentials for 1 compared to DCA. The reduction potential of the first singlet excited state is of the same order of magnitude in both cases. Several photo-oxidation reactions sensitized by 1 and DCA are compared in homogeneous solution and at the gas-solid interface by embedding 1 and DCA in silica monoliths. Our results confirmed the dual character of both cyanoanthracene derivatives as electron transfer and energy transfer sensitizers, highly efficient for singlet oxygen production.

11.
Langmuir ; 25(18): 11168-79, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19735158

ABSTRACT

We synthesized new cyanoaromatics, benzo[b]triphenylene-9,14-dicarbonitrile (DBTP) 1a and a graftable derivative, 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid (DBTP-COOH) 1b, easily prepared from commercial reagents. Their photosensitizing properties were investigated. Hybrid porous silica monoliths loaded with encapsulated 1a or grafted 1b were prepared, and their adsorption, spectroscopic and photosensitizing properties, as well as stability, were compared. Solvent-free, efficient oxidation of dimethylsulfide (DMS) was observed at the gas-solid interface under visible light irradiation. Quantum yields of formation of 1O2 inside the porous monoliths are comparable to those of phenalenone. Singlet oxygen lifetimes (approximately 25 micros) were found to be longer in silica monoliths than in usual polar solvents such as methanol or ethanol. This new class of hybrid materials work as porous, transparent, and highly efficient microreactors for oxidation reactions under visible light.

12.
Inorg Chem ; 47(20): 9419-30, 2008 Oct 20.
Article in English | MEDLINE | ID: mdl-18803373

ABSTRACT

The plant pathogenic enterobacterium Erwinia chrysanthemi causes important soft-rot disease on a wide range of plants including vegetables and ornamentals of economic importance. It produces a major mono(catecholate) siderophore, chrysobactin (alpha-N-(2,3-dihydroxybenzoyl)-D-lysyl-L-serine). To unravel the role of chrysobactin in the virulence of E. chrysanthemi, its iron(III) coordination properties were thus investigated in aqueous solutions using electrospray ionization mass spectrometric, potentiometric, and spectrophotometric methods. Moreover, kinetic experiments allowed us to determine the uptake and release mechanisms. The formation mechanism of the 1:1 complex reveals a key role of the terminal carboxylic group of chrysobactin in the binding of either FeOH(2+) or Fe2(OH)2(4+). The proton-driven dissociation of the ferric tris-, bis-, and mono(chrysobactin) complexes was also studied. For these three ferric complexes, a single protonation triggers the release of the bound chrysobactin molecule. Interestingly, the dissociation of the last ligand proceeded via the formation of an intermediate for which a salicylate-type mode of bonding was proposed.


Subject(s)
Dickeya chrysanthemi/metabolism , Dipeptides/metabolism , Iron/metabolism , Siderophores/metabolism , Ferric Compounds/chemistry , Kinetics , Ligands , Potentiometry , Protein Binding , Spectrophotometry
14.
Inorg Chem ; 43(3): 1137-52, 2004 Feb 09.
Article in English | MEDLINE | ID: mdl-14753838

ABSTRACT

Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.


Subject(s)
Azotobacter vinelandii/metabolism , Iron/metabolism , Peptides/metabolism , Biological Transport, Active , Circular Dichroism , Culture Media , Electrochemistry , Ferric Compounds/chemistry , Fluorescent Dyes/metabolism , Hydroxamic Acids , Kinetics , Models, Molecular , Oxidation-Reduction , Peptides/chemistry , Peptides/isolation & purification , Potentiometry , Spectrophotometry, Ultraviolet , Thermodynamics
15.
J Am Chem Soc ; 125(6): 1541-50, 2003 Feb 12.
Article in English | MEDLINE | ID: mdl-12568614

ABSTRACT

We report the self-assembly process of a supramolecular edifice based on the coordination of europium(III) by a ditopic strand L bearing tridentate bis(benzimidazolyl)pyridine subunits. Varying the metal/ligand ratio and using a fruitful combination of electrospray mass spectrometry and absorption spectrophotometry, we characterized three major complexes (EuL(2), Eu(2)L(2), and Eu(2)L(3)) in acetonitrile. Kinetic investigations showed an alternative "braiding" and "keystone" mechanism leading to Eu(2)L(3). The formation mechanism of the dinuclear triple-stranded helicate, which is mainly governed by electrostatic interactions, goes via the "side-by-side" Eu(2)L(2) intermediate. Our thermodynamic and kinetic data allow the prediction of the apparent "magic" self-assembly of Eu(2)L(3) which is fast and efficient only under a strict set of conditions.

16.
J Org Chem ; 67(4): 1061-70, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11846645

ABSTRACT

Chiral alpha- and beta-hydroxy acids such as (S)-lactic acid, (S)-phenyllactic acid, (S)-mandelic acid, or (3R)-3-hydroxybutyric acid have been used as tether groups for intramolecular and diastereoselective [2 + 2] photocycloaddition of 3-oxocyclohexene carboxylic acid derivatives. Total regiocontrol toward the straight adduct and high diastereoselectivities (up to 94%) were observed in the case of butenyl lactate 11. After separation of the two diastereoisomers, cleavage of the chiral tether under basic conditions afforded cyclobutane lactones in good yield and enantiomeric pure form. An X-ray structure has been recorded that confirmed the relative and absolute configuration of the three contiguous stereogenic centers assigned according to CD spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...