Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6659): 748-753, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590351

ABSTRACT

During the consumption of alkanes, Alcanivorax borkumensis will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.


Subject(s)
Alcanivoraceae , Alkanes , Biofilms , Petroleum , Alcanivoraceae/metabolism , Alkanes/metabolism , Petroleum/metabolism , Biodegradation, Environmental
3.
Nat Phys ; 14(7): 728-732, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30079095

ABSTRACT

In embryonic development or tumor evolution, cells often migrate collectively within confining tracks defined by their microenvironment 1,2. In some of these situations, the displacements within a cell strand are antiparallel 3, giving rise to shear flows. However, the mechanisms underlying these spontaneous flows remain poorly understood. Here, we show that an ensemble of spindle-shaped cells plated in a well-defined stripe spontaneously develop a shear flow whose characteristics depend on the width of the stripe. On wide stripes, the cells self-organize in a nematic phase with a director at a well-defined angle with the stripe's direction, and develop a shear flow close to the stripe's edges. However, on stripes narrower than a critical width, the cells perfectly align with the stripe's direction and the net flow vanishes. A hydrodynamic active gel theory provides an understanding of these observations and identifies the transition between the non-flowing phase oriented along the stripe and the tilted phase exhibiting shear flow as a Fréedericksz transition driven by the activity of the cells. This physical theory is grounded in the active nature of the cells and based on symmetries and conservation laws, providing a generic mechanism to interpret in vivo antiparallel cell displacements.

4.
Phys Rev Lett ; 120(20): 208101, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864293

ABSTRACT

We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.


Subject(s)
Bronchi/cytology , Epithelial Cells/cytology , Models, Biological , Cells, Cultured , Epithelial Cells/chemistry , Humans
5.
Soft Matter ; 13(38): 6913-6928, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28825077

ABSTRACT

We present a hydrodynamic model of spreading epithelial monolayers described as polar viscous fluids, with active contractility and traction on a substrate. The combination of both active forces generates an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity with characteristic time scales that depend on contact forces. Our viscous fluid model provides a comprehensive understanding of a variety of observations on the slow dynamics of epithelial monolayers, remarkably those that seemed to be characteristic of elastic media. The model also makes simple predictions to test the non-elastic nature of the mechanical waves, and provides new insights into collective cell dynamics, explaining plithotaxis as a result of strong flow-polarity coupling, and quantifying the non-locality of force transmission. In addition, we study the nonlinear regime of waves deriving an exact map of the model into the complex Ginzburg-Landau equation, which provides a complete classification of possible nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence, which in turn could explain the chaotic dynamics often observed in epithelia.

6.
Soft Matter ; 13(6): 1235-1243, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28098306

ABSTRACT

Collective cell migration in spreading epithelia in controlled environments has become a landmark in our current understanding of fundamental biophysical processes in development, regeneration, wound healing or cancer. Epithelial monolayers are treated as thin layers of a viscous fluid that exert active traction forces on the substrate. The model is exactly solvable and shows a broad range of applicabilities for the quantitative analysis and interpretation of force microscopy data of monolayers from a variety of experiments and cell lines. In addition, the proposed model provides physical insights into how the biological regulation of the tissue is encoded in a reduced set of time-dependent physical parameters. In particular the temporal evolution of the effective viscosity entails a mechanosensitive regulation of adhesion. Besides, the observation of an effective elastic tensile modulus can be interpreted as an emergent phenomenon in an active fluid.

7.
Eur Phys J E Soft Matter ; 37(5): 41, 2014 May.
Article in English | MEDLINE | ID: mdl-24853635

ABSTRACT

We study and classify the time-dependent morphologies of polarized tissues subject to anisotropic but spatially homogeneous growth. Extending previous studies, we model the tissue as a fluid, and discuss the interplay of the active stresses generated by the anisotropic cell division and three types of passive mechanical forces: viscous stresses, friction with the environment and tension at the tissue boundary. The morphology dynamics is formulated as a free-boundary problem, and conformal mapping techniques are used to solve the evolution numerically. We combine analytical and numerical results to elucidate how the different passive forces compete with the active stresses to shape the tissue in different temporal regimes and derive the corresponding scaling laws. We show that in general the aspect ratio of elongated tissues is non-monotonic in time, eventually recovering isotropic shapes in the presence of friction forces, which are asymptotically dominant.


Subject(s)
Body Patterning , Hydrodynamics , Models, Chemical , Elasticity , Liquid Crystals/chemistry , Surface Properties , Viscosity
8.
Phys Rev Lett ; 110(7): 078102, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166412

ABSTRACT

We show that actin lamellar fragments driven solely by polymerization forces at the bounding membrane are generically motile when the circular symmetry is spontaneously broken, with no need of molecular motors or global polarization. We base our study on a nonlinear analysis of a recently introduced minimal model [Callan-Jones et al., Phys. Rev. Lett. 100, 258106 (2008)]. We prove the nonlinear instability of the center of mass and find an exact and simple relation between shape and center-of-mass velocity. A complex subcritical bifurcation scenario into traveling solutions is unfolded, where finite velocities appear through a nonadiabatic mechanism. Examples of traveling solutions and their stability are studied numerically.


Subject(s)
Actins/metabolism , Cell Movement/physiology , Models, Biological , Cell Membrane/metabolism , Cell Membrane/physiology , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...