Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 4(7): 100815, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38986612

ABSTRACT

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Luminescent Proteins , Fluorescence Resonance Energy Transfer/methods , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/chemistry , Biosensing Techniques/methods , Humans , Vinculin/metabolism , Vinculin/chemistry , Actins/metabolism , Actins/chemistry , Biomechanical Phenomena
2.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260589

ABSTRACT

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, the mechanisms by which forces affect protein function inside cells remain unclear. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated if force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo in a synthetic actin-crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cellular force generation as well as force-sensitive bond dynamics of the biosensor. Together, this work describes a new framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells. MOTIVATION: The ability of cells to sense mechanical forces is critical in developmental, physiological, and pathological processes. Cells sense mechanical cues via force-induced alterations in protein structure and function, but elucidation of the molecular mechanisms is hindered by the lack of approaches to directly probe the effect of forces on protein structure and function inside cells. Motivated by in vitro observations of reversible fluorescent protein mechanical switching, we developed an approach for detecting fluorescent protein mechanical switching in cellulo . This enables the visualization of force-sensitive protein function inside living cells.

3.
Biomech Model Mechanobiol ; 23(1): 117-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37704890

ABSTRACT

Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding-meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1-4 kBT, which translates to a ~ 3-50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.


Subject(s)
Glycocalyx , Integrins , Integrins/metabolism , Glycocalyx/metabolism , Ligands , Cell Membrane/metabolism , Protein Binding , Cell Adhesion/physiology
5.
J Phys Chem B ; 126(39): 7495-7509, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36137248

ABSTRACT

Molecular motors, such as myosin and kinesin, perform diverse tasks ranging from vesical transport to bulk muscle contraction. Synthetic molecular motors may eventually be harnessed to perform similar tasks in versatile synthetic systems. The most promising type of synthetic molecular motor, the DNA walker, can undergo processive motion but generally exhibits low speeds and virtually no capacity for force generation. However, we recently showed that highly polyvalent DNA motors (HPDMs) can rival biological motors by translocating at micrometer per minute speeds and generating 100+ pN of force. Accordingly, DNA nanotechnology-based designs may hold promise for the creation of synthetic, force-generating nanomotors. However, the dependencies of HPDM speed and force on tunable design parameters are poorly understood and difficult to characterize experimentally. To overcome this challenge, we present RoloSim, an adhesive dynamics software package for fine-grained simulations of HPDM translocation. RoloSim uses biophysical models for DNA duplex formation and dissociation kinetics to explicitly model tens of thousands of molecular scale interactions. These molecular interactions are then used to calculate the nano- and microscale motions of the motor. We use RoloSim to uncover how motor force and speed scale with several tunable motor properties such as motor size and DNA duplex length. Our results support our previously defined hypothesis that force scales linearly with polyvalency. We also demonstrate that HPDMs can be steered with external force, and we provide design parameters for novel HPDM-based molecular sensor and nanomachine designs.


Subject(s)
Adhesives , Kinesins , DNA , Kinetics , Myosins
6.
Nano Lett ; 22(15): 6235-6244, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35881934

ABSTRACT

DNA-based FluoroCubes were recently developed as a solution to photobleaching, a ubiquitous limitation of fluorescence microscopy (Niekamp; ; Stuurman; ; Vale Nature Methods, 2020). FluoroCubes, that is, compact ∼4 × 4 × 5.4 nm3 four-helix bundles coupled to ≤6 fluorescent dyes, remain fluorescent up to ∼50× longer than single dyes and emit up to ∼40× as many photons. The current work answers two important questions about the FluoroCubes. First, what is the mechanism by which photostability is enhanced? Second, are FluoroCubes compatible with Förster resonance energy transfer (FRET) and similar techniques? We use single particle photobleaching studies to show that photostability arises through interactions between the fluorophores and the four-helix DNA bundle. Supporting this, we discover that smaller ∼4 × 4 × 2.7 nm3 FluoroCubes also confer ultraphotostability. However, we find that certain dye-dye interactions negatively impact FluoroCube performance. Accordingly, 4-dye FluoroCubes lacking these interactions perform better than 6-dye FluoroCubes. We also demonstrate that FluoroCubes are compatible with FRET and dark quenching applications.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , DNA , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Photobleaching
7.
ACS Nano ; 16(4): 5335-5348, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35324164

ABSTRACT

Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.


Subject(s)
Integrins , Myocytes, Cardiac , Integrins/metabolism , Myocytes, Cardiac/metabolism , Traction , DNA Probes , DNA/metabolism , Cell Adhesion
8.
Sci Adv ; 8(8): eabg4485, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213231

ABSTRACT

T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.

9.
J Am Chem Soc ; 143(46): 19466-19473, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34762807

ABSTRACT

In single-molecule force spectroscopy (SMFS), a tethered molecule is stretched using a specialized instrument to study how macromolecules extend under force. One problem in SMFS is the serial and slow nature of the measurements, performed one molecule at a time. To address this long-standing challenge, we report on the origami polymer force clamp (OPFC) which enables parallelized manipulation of the mechanical forces experienced by molecules without the need for dedicated SMFS instruments or surface tethering. The OPFC positions target molecules between a rigid nanoscale DNA origami beam and a responsive polymer particle that shrinks on demand. As a proof-of-concept, we record the steady state and time-resolved mechanical unfolding dynamics of DNA hairpins using the fluorescence signal from ensembles of molecules and confirm our conclusion using modeling.


Subject(s)
DNA/chemistry , Polymers/chemistry , Single Molecule Imaging , Temperature , Optical Phenomena , Particle Size
10.
Biosens Bioelectron ; 190: 113433, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34171818

ABSTRACT

Biofluid-derived cell-free nucleic acids such as microRNAs (miRNAs) and circulating tumor-derived DNAs (ctDNAs) have emerged as promising disease biomarkers. Conventional detection of these biomarkers by digital PCR and next generation sequencing, although highly sensitive, requires time-consuming extraction and amplification steps that also increase the risk of sample loss and cross-contamination. To achieve the direct, rapid, and amplification-free detection of miRNAs and ctDNAs with near-perfect specificity and single-molecule level sensitivity, we herein designed a single-molecule kinetic fingerprinting assay, termed intramolecular single-molecule recognition through equilibrium Poisson sampling (iSiMREPS). iSiMREPS exploits a dynamic DNA nanosensor comprising a surface anchor and a pair of fluorescent detection probes: one probe captures a target molecule onto the surface, while the other transiently interrogates the target to generate kinetic fingerprints by intramolecular single-molecule Förster resonance energy transfer (smFRET) that are recorded by single-molecule fluorescence microscopy and identify the target after kinetic filtering and data analysis. We optimize the sensor design, use formamide to further accelerate the fingerprinting kinetics, and maximize sensitivity by removing non-target-bound probes using toehold-mediated strand displacement to reduce background. We show that iSiMREPS can detect, in as little as 10 s, two distinct, promising cancer biomarkers-miR-141 and a common EGFR exon 19 deletion-reaching a limit of detection (LOD) of ~3 fM and a mutant allele fraction among excess wild-type as low as 1 in 1 million, or 0.0001%. We anticipate that iSiMREPS will find utility in research and clinical diagnostics based on its features of rapid detection, high specificity, sensitivity, and generalizability.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleic Acids , Fluorescence Resonance Energy Transfer , Kinetics , Single Molecule Imaging
11.
Soft Matter ; 17(25): 6056-6062, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34151336

ABSTRACT

Nano- and micro-scale burnt bridge ratchet motors, which translocate via "guide" molecules that bind to and degrade a field of "fuel" molecules, have recently emerged in several biological and engineering contexts. The capacity of these motors to generate mechanical forces remains an open question. Here, chemomechanical modeling suggests that BBR force scales linearly with the steady-state number of guide-fuel bonds.


Subject(s)
Mechanical Phenomena , Molecular Motor Proteins
12.
J Vis Exp ; (169)2021 03 20.
Article in English | MEDLINE | ID: mdl-33818569

ABSTRACT

Mechanical forces transmitted at the junction between two neighboring cells and at the junction between cells and the extracellular matrix are critical for regulating many processes ranging from development to immunology. Therefore, developing the tools to study these forces at the molecular scale is critical. Our group developed a suite of molecular tension sensors to quantify and visualize the forces generated by cells and transmitted to specific ligands. The most sensitive class of molecular tension sensors are comprised of nucleic acid stem-loop hairpins. These sensors use fluorophore-quencher pairs to report on the mechanical extension and unfolding of DNA hairpins under force. One challenge with DNA hairpin tension sensors is that they are reversible with rapid hairpin refolding upon termination of the tension and thus transient forces are difficult to record. In this article, we describe the protocols for preparing DNA tension sensors that can be "locked" and prevented from refolding to enable "storing" of mechanical information. This allows for the recording of highly transient piconewton forces, which can be subsequently "erased" by the addition of complementary nucleic acids that remove the lock. This ability to toggle between real-time tension mapping and mechanical information storing reveals weak, short-lived, and less abundant forces, that are commonly employed by T cells as part of their immune functions.


Subject(s)
DNA/metabolism , Animals , Mice , Mice, Transgenic
13.
Phys Biol ; 18(3): 034001, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33316784

ABSTRACT

Cells use protein-based mechanosensors to measure the physical properties of their surroundings. Synthetic tension sensors made of proteins, DNA, and other molecular building blocks have recently emerged as tools to visualize and perturb the mechanics of these mechanosensors. While almost all synthetic tension sensors are designed to exhibit orientation-independent force responses, recent work has shown that biological mechanosensors often function in a manner that is highly dependent on force orientation. Accordingly, the design of synthetic mechanosensors with orientation-dependent force responses can provide a means to study the role of orientation in mechanosensation. Furthermore, the process of designing anisotropic force responses may yield insight into the physical basis for orientation-dependence in biological mechanosensors. Here, we propose a DNA-based molecular tension sensor design wherein multivalency is used to create an orientation-dependent force response. We apply chemomechanical modeling to show that multivalency can be used to create synthetic mechanosensors with force response thresholds that vary by tens of pN with respect to force orientation.


Subject(s)
DNA/physiology , Mechanotransduction, Cellular/physiology , Anisotropy , Biomechanical Phenomena , Computer Simulation , Stress, Mechanical
14.
Nat Methods ; 17(10): 1018-1024, 2020 10.
Article in English | MEDLINE | ID: mdl-32929270

ABSTRACT

Despite the vital role of mechanical forces in biology, it still remains a challenge to image cellular force with sub-100-nm resolution. Here, we present tension points accumulation for imaging in nanoscale topography (tPAINT), integrating molecular tension probes with the DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique to map piconewton mechanical events with ~25-nm resolution. To perform live-cell dynamic tension imaging, we engineered reversible probes with a cryptic docking site revealed only when the probe experiences forces exceeding a defined mechanical threshold (~7-21 pN). Additionally, we report a second type of irreversible tPAINT probe that exposes its cryptic docking site permanently and thus integrates force history over time, offering improved spatial resolution in exchange for temporal dynamics. We applied both types of tPAINT probes to map integrin receptor forces in live human platelets and mouse embryonic fibroblasts. Importantly, tPAINT revealed a link between platelet forces at the leading edge of cells and the dynamic actin-rich ring nucleated by the Arp2/3 complex.


Subject(s)
Mechanotransduction, Cellular , Nanotechnology/methods , Single-Cell Analysis , Animals , Biomechanical Phenomena , Blood Platelets/physiology , Fibroblasts/physiology , Humans , Mice , Nanotechnology/instrumentation
15.
Opt Express ; 28(7): 10039-10061, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225599

ABSTRACT

A fundamental challenge with fluorophore orientation measurement is degeneracy, which is the inability to distinguish between multiple unique fluorophore orientations. Techniques exist for the non-degenerate measurement of the orientations of single, static fluorophores. However, such techniques are unsuitable for densely labeled and/or dynamic samples common to biological research. Accordingly, a rapid, widefield microscopy technique that can measure orientation parameters for ensembles of fluorophores in a non-degenerate manner is desirable. We propose that exciting samples with polarized light and multiple incidence angles could enable such a technique. We use Monte Carlo simulations to validate this approach for specific axially symmetric ensembles of fluorophores and obtain optimal experimental parameters for its future implementation.


Subject(s)
Fluorescent Dyes/chemistry , Imaging, Three-Dimensional , Spectrum Analysis , Algorithms , Fluorescence , Monte Carlo Method , Photons
16.
Angew Chem Int Ed Engl ; 59(24): 9514-9521, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32017312

ABSTRACT

Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure-function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance.


Subject(s)
Biomimetics/instrumentation , DNA , Molecular Motor Proteins/metabolism , Mechanical Phenomena , Motion , Time Factors
18.
Nano Lett ; 19(10): 6977-6986, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31402671

ABSTRACT

Motor proteins such as myosin, kinesin, and dynein are essential to eukaryotic life and power countless processes including muscle contraction, wound closure, cargo transport, and cell division. The design of synthetic nanomachines that can reproduce the functions of these motors is a longstanding goal in the field of nanotechnology. DNA walkers, which are programmed to "walk" along defined tracks via the burnt bridge Brownian ratchet mechanism, are among the most promising synthetic mimics of these motor proteins. While these DNA-based motors can perform useful tasks such as cargo transport, they have not been shown to be capable of cooperating to generate large collective forces for tasks akin to muscle contraction. In this work, we demonstrate that highly polyvalent DNA motors (HPDMs), which can be viewed as cooperative teams of thousands of DNA walkers attached to a microsphere, can generate and sustain substantial forces in the 100+ pN regime. Specifically, we show that HPDMs can generate forces that can unzip and shear DNA duplexes (∼12 and ∼50 pN, respectively) and rupture biotin-streptavidin bonds (∼100-150 pN). To help explain these results, we present a variant of the burnt-bridge Brownian ratchet mechanism that we term autochemophoresis, wherein many individual force generating units generate a self-propagating chemomechanical gradient that produces large collective forces. In addition, we demonstrate the potential of this work to impact future engineering applications by harnessing HPDM autochemophoresis to deposit "molecular ink" via mechanical bond rupture. This work expands the capabilities of synthetic DNA motors to mimic the force-generating functions of biological motors. Our work also builds upon previous observations of autochemophoresis in bacterial transport processes, indicating that autochemophoresis may be a fundamental mechanism of pN-scale force generation in living systems.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Mechanical Phenomena , Molecular Motor Proteins/chemistry , Motion , Nanotechnology/methods
19.
Nano Lett ; 18(8): 4803-4811, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29911385

ABSTRACT

Mechanical forces are central to most, if not all, biological processes, including cell development, immune recognition, and metastasis. Because the cellular machinery mediating mechano-sensing and force generation is dependent on the nanoscale organization and geometry of protein assemblies, a current need in the field is the development of force-sensing probes that can be customized at the nanometer-length scale. In this work, we describe a DNA origami tension sensor that maps the piconewton (pN) forces generated by living cells. As a proof-of-concept, we engineered a novel library of six-helix-bundle DNA-origami tension probes (DOTPs) with a tailorable number of tension-reporting hairpins (each with their own tunable tension response threshold) and a tunable number of cell-receptor ligands. We used single-molecule force spectroscopy to determine the probes' tension response thresholds and used computational modeling to show that hairpin unfolding is semi-cooperative and orientation-dependent. Finally, we use our DOTP library to map the forces applied by human blood platelets during initial adhesion and activation. We find that the total tension signal exhibited by platelets on DOTP-functionalized surfaces increases with the number of ligands per DOTP, likely due to increased total ligand density, and decreases exponentially with the DOTP's force-response threshold. This work opens the door to applications for understanding and regulating biophysical processes involving cooperativity and multivalency.


Subject(s)
Biosensing Techniques/instrumentation , DNA Probes/chemistry , DNA/chemistry , Biosensing Techniques/methods , Blood Platelets/physiology , Cell Adhesion , Cell Line , Computer Simulation , Erythrocytes/chemistry , Gene Library , Humans , Ligands , Mechanotransduction, Cellular , Monte Carlo Method , Nanoparticles/chemistry , Nucleic Acid Conformation , Particle Size , Proof of Concept Study , Streptavidin/chemistry
20.
Nat Methods ; 15(2): 115-118, 2018 02.
Article in English | MEDLINE | ID: mdl-29256495

ABSTRACT

Mechanical forces are integral to many biological processes; however, current techniques cannot map the magnitude and direction of piconewton molecular forces. Here, we describe molecular force microscopy, leveraging molecular tension probes and fluorescence polarization microscopy to measure the magnitude and 3D orientation of cellular forces. We mapped the orientation of integrin-based traction forces in mouse fibroblasts and human platelets, revealing alignment between the organization of force-bearing structures and their force orientations.


Subject(s)
Fluorescence Polarization/methods , Integrins/metabolism , Mechanotransduction, Cellular , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods , Molecular Probes/metabolism , Biomechanical Phenomena , Blood Platelets/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...