Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 107(2): 379-88, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19407259

ABSTRACT

The Institute of Medicine expressed a need for improved sweating rate (msw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as msw (g.m(-2).h(-1))=27.9.Ereq.(Emax)(-0.455), where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new msw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to 500 observations) by using a variety of metabolic rates over a range of environmental conditions (ambient temperature, 15-46 degrees C; water vapor pressure, 0.27-4.45 kPa; wind speed, 0.4-2.5 m/s), clothing, and equipment combinations and durations (2-8 h). Data are expressed as grams per square meter per hour and were analyzed using fuzzy piecewise regression. OSE overpredicted sweating rates (P<0.003) compared with observed msw. Both the correction equation (OSEC), msw=147.exp (0.0012.OSE), and a new piecewise (PW) equation, msw=147+1.527.Ereq-0.87.Emax were derived, compared with OSE, and then cross-validated against independent data (21 males and 9 females; >200 observations). OSEC and PW were more accurate predictors of sweating rate (58 and 65% more accurate, P<0.01) and produced minimal error (standard error estimate<100 g.m(-2).h(-1)) for conditions both within and outside the original OSE domain of validity. The new equations provide for more accurate sweat predictions over a broader range of conditions with applications to public health, military, occupational, and sports medicine settings.


Subject(s)
Body Temperature Regulation , Drinking , Models, Biological , Sweating , Water-Electrolyte Balance , Water/metabolism , Body Surface Area , Clothing , Energy Metabolism , Exercise , Female , Fuzzy Logic , Humans , Kinetics , Male , Military Medicine , Occupational Medicine , Reproducibility of Results , Sports Medicine , Temperature , Vapor Pressure , Wind
2.
Undersea Hyperb Med ; 29(3): 189-203, 2002.
Article in English | MEDLINE | ID: mdl-12670121

ABSTRACT

A disabled submarine (DISSUB) lacking power and/or environmental control will become cold, and the ambient air may become hypercapnic and hypoxic. This study examined if the combination of hypoxia, hypercapnia, and cold exposure would adversely affect thermoregulatory responses to acute cold exposure in survivors awaiting rescue. Seven male submariners (33 +/- 6 yrs) completed a series of cold-air tests (CAT) that consisted of 20-min at T(air) = 22 degrees C, followed by a linear decline (1 degrees C x min(-1)) in T(air) to 12 degrees C, which was then held constant for an additional 150-min. CAT were performed under normoxic, normocapnic conditions (D0), acute hypoxia (D1, 16.75% O2), after 4 days of chronic hypoxia, hypercapnia and cold (D5, 16.75% O2, 2.5% CO2, 4 degrees C), and hypoxia-only again (D8, 16.75% O2). The deltaTsk during CAT was larger (P < 0.05) on D0 (-5.2 degrees C), vs. D1 (-4.8 degrees C), D5 (-4.5 degrees C), and D8 (-4.4 degrees C). The change (relative to 0-min) in metabolic heat production (deltaM) at 20-min of CAT was lower (P < 0.05) on D1, D5, and D8, vs. D0, with no differences between D1, D5 and D8. DeltaM was not different among trials at any time point after 20-min. The mean body temperature threshold for the onset of shivering was lower on D1 (35.08 degrees C), D5 (34.85 degrees C), and D8 (34.69 degrees C), compared to D0 (36.01 degrees C). Changes in heat storage did not differ among trials and rectal temperature was not different in D0 vs. D1, D5, and D8. Thus, mild hypoxia (16.75% F1O2) impairs vasoconstrictor and initial shivering responses, but the addition of elevated F1CO2 and cold had no further effect. These thermoregulatory effector changes do not increase the risk for hypothermia in DISSUB survivors who are adequately clothed.


Subject(s)
Body Temperature Regulation/physiology , Cold Temperature/adverse effects , Hypothermia/physiopathology , Skin Temperature/physiology , Submarine Medicine , Adult , Ecological Systems, Closed , Energy Intake , Humans , Hypothermia/blood , Male , Norepinephrine/blood , Rectum/physiology , Shivering/physiology , Vasoconstriction/physiology , Vasodilation/physiology
3.
Aviat Space Environ Med ; 72(6): 562-6, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11396562

ABSTRACT

BACKGROUND: The purpose of this study was to develop a predictive model for uphill and downhill load carriage. Relative to level walking, net energy costs increase with uphill movement and decrease moving downhill. To simulate load carriage over complex terrain, a model must estimate the cost of downhill movement. The net cost of downhill movement is expected to reach a minimum value, then increase as work is required to maintain stability. Thus, downhill costs cannot be simply extrapolated from a linear relationship for uphill work. METHOD: Oxygen uptake (VO2) was measured for 16 subjects during test sessions which consisted of walking at 1.34 m x s(-1) on a single grade (-12%, -10%, -8%, -4%, -2%, 0%, +4%, +4%, +8% and +12%) with a 0, 9.1- or 18.1-kg load. RESULTS: No significant gender differences were found, therefore data were pooled. The minimum VO2 values occurred at -8% grade. CONCLUSION: Our model assumes that the total energy requirement (WT) is the sum of the cost of level walking (W(L)) plus the cost of vertical displacement (Wv) for the total mass (body plus load). For uphill work, Wv was calculated by multiplying the cost of vertical displacement by an efficiency factor. For downhill work, the cost of vertical displacement was modified by an exponential function of the slope angle. Values for level and negative slope walking with no load were compared with estimated values derived from two published studies to partially validate the negative model.


Subject(s)
Energy Metabolism/physiology , Lifting , Models, Biological , Walking/physiology , Weight-Bearing/physiology , Age Factors , Analysis of Variance , Body Height , Body Surface Area , Body Weight , Female , Humans , Male , Oxygen Consumption/physiology , Predictive Value of Tests
4.
Aviat Space Environ Med ; 72(6): 576-8, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11396564

ABSTRACT

BACKGROUND: Total handwear insulation (I(T)) is dependent on the rate of heat transfer in air through the skin-handwear interface, handwear layers, and the surface boundary air layer. As altitude increases, the corresponding decrease in air pressure reduces convective heat loss. As convective heat losses decline, I(T), which is inversely related to the rate of heat loss, should increase. Increasing air velocity also reduces the insulation (Ia) provided by the boundary layer. METHODS: The military issue test handwear, Light-duty glove (LD), Trigger-finger mitten (TF), and Arctic mitten (AM), were fitted over a biophysical hand model. Model surface temperatures were 25 degrees C, and air temperature was 10 degrees C. The handwear was tested at simulated altitudes of sea level (101 kPa), 2500 m (75 kPa) and 5000 m (54 kPa) in still air and at 5 m x s(-1). RESULTS: Overall, the effects of wind and altitude on I(T) were significant. Differences for I(T) between 0 and 5000 m were significant for LD and TF. Increases in I(T) greater than 10% are considered of sufficient magnitude to alter comfort sensation. CONCLUSIONS: Differences of that magnitude occurred most frequently between 0 and 5000 m. The present results are consistent with an increase in I(T) with increasing altitude. Changes in I(T) were greater in still air and for less insulated handwear where the contribution of Ia to I(T) was more important.


Subject(s)
Altitude , Gloves, Protective/standards , Hypothermia/prevention & control , Military Medicine , Military Personnel , Thermodynamics , Air Pressure , Analysis of Variance , Convection , Gloves, Protective/classification , Humans , Hypothermia/etiology , Hypothermia/physiopathology , Materials Testing , Models, Biological , Temperature , United States , Wind
5.
Aviat Space Environ Med ; 72(4): 329-35, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11318011

ABSTRACT

BACKGROUND: The purpose of this study was to compare thermoregulatory and subjective responses of 12 test subjects (10 male, 2 female) wearing 5 different Joint Service Lightweight Integrated Suit Technology (JSLIST) prototype and 3 different currently fielded control chemical/ biological (CB) protective overgarments. METHODS: The overgarments were compared while subjects attempted to complete 100 min of moderate exercise (400 W) in an environmental chamber (35 degrees C/50% rh). Rectal temperature (Tre), skin temperature, heart rate, sweating rate, and test time, as well as subjective symptoms of heat illness were measured. Data were analyzed for times earlier than 100 min because subjects were not usually able to complete the 100-min trials. RESULTS: At 50 min, of the 3 controls, the Army/Air Force Battledress Overgarment (BDO) imposed significantly greater heat strain (indicated by Tre 37.90 degrees C) than the Marine Saratoga (SAR) (Tre 37.68 degrees C) and Navy Chemical Protective Overgarment (CPO) (Tre 37.69 degrees C). The JSLIST prototype garments imposed heat strain (50 min Tre 37.73-37.86 degrees C) as well as subjective perception of heat strain, that ranged between the warmest and coolest controls. CONCLUSIONS: In the environmental and exercise test conditions of this study, we did not find the five JSLIST overgarments to be consistently different from one another. Subjects in the control garments were and felt generally warmer (BDO) or cooler (SAR, CPO) than in the JSLIST prototype garments.


Subject(s)
Ergonomics , Heat Stress Disorders/physiopathology , Hot Temperature , Protective Clothing/standards , Adult , Analysis of Variance , Chemical Warfare , Equipment Design , Female , Heat Stress Disorders/etiology , Heat Stress Disorders/prevention & control , Humans , Male , Sweating
6.
J Appl Physiol (1985) ; 85(4): 1210-7, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9760307

ABSTRACT

The purpose of this study was to determine how chronic exertional fatigue and sleep deprivation coupled with negative energy balance affect thermoregulation during cold exposure. Eight men wearing only shorts and socks sat quietly during 4-h cold air exposure (10 degreesC) immediately after (<2 h, A) they completed 61 days of strenuous military training (energy expenditure approximately 4,150 kcal/day, energy intake approximately 3,300 kcal/day, sleep approximately 4 h/day) and again after short (48 h, SR) and long (109 days, LR) recovery. Body weight decreased 7.4 kg from before training to A, then increased 6.4 kg by SR, with an additional 6.4 kg increase by LR. Body fat averaged 12% during A and SR and increased to 21% during LR. Rectal temperature (Tre) was lower before and during cold air exposure for A than for SR and LR. Tre declined during cold exposure in A and SR but not LR. Mean weighted skin temperature (Tsk) during cold exposure was higher in A and SR than in LR. Metabolic rate increased during all cold exposures, but it was lower during A and LR than SR. The mean body temperature (0.67 Tre + 0.33 Tsk) threshold for increasing metabolism was lower during A than SR and LR. Thus chronic exertional fatigue and sleep loss, combined with underfeeding, reduced tissue insulation and blunted metabolic heat production, which compromised maintenance of body temperature. A short period of rest, sleep, and refeeding restored the thermogenic response to cold, but thermal balance in the cold remained compromised until after several weeks of recovery when tissue insulation had been restored.


Subject(s)
Body Temperature Regulation , Fatigue , Food Deprivation , Hypothermia/physiopathology , Physical Exertion , Sleep Deprivation , Body Composition , Body Temperature , Disease Susceptibility , Energy Metabolism , Humans , Male , Military Medicine , Military Personnel , Time Factors , United States
7.
J Appl Physiol (1985) ; 85(2): 543-53, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9688732

ABSTRACT

Effects of the menstrual cycle on heat loss and heat production (M) and core and skin temperature responses to cold were studied in six unacclimatized female nonsmokers (18-29 yr of age). Each woman, resting supine, was exposed to a cold transient (ambient temperature = mean radiant temperature = 20 to -5 degrees C at -0.32 degrees C/min, relative humidity = 50 +/- 2%, wind speed = 1 m/s) in the follicular (F) phase (days 2-6) and midluteal (L) phase (days 19-23) of her menstrual cycle. Clothed in each of two ensembles with different thermal resistances, women performed multiple experiments in the F and L phases. Thermal resistance was 0.2 and 0.4 m2 . K . W-1 for ensembles A and B, respectively. Esophageal temperature (Tes), mean weighted skin temperature (Tsk), finger temperature (Tfing), and area-weighted heat flux were recorded continuously. Rate of heat debt (-S) and integrated mean body temperature (Tb,i) were calculated by partitional calorimetry throughout the cold ramp. Extensive peripheral vasoconstriction in the F phase during early periods of the ramp elevated Tes above thermoneutral levels. Shivering thermogenesis (DeltaM = M - Mbasal, W /m2) was highly correlated with declines in Tsk and Tfing (P <0.0001). There was a reduced slope in M as a function of Tb,i in the L phase with ensembles A (P < 0.02) and B (P < 0.01). Heat flux was higher and -S was less in the L phases with ensemble A (P < 0.05). An analytic model revealed that Tsk and Tes contribute as additive inputs and Tfing has a multiplicative effect on the total control of DeltaM during cold transients (R2 = 0.9). Endogenous hormonal levels at each menstrual cycle phase, core temperature and Tsk inputs, vascular responses, and variations in body heat balance must be considered in quantifying thermoregulatory responses in women during cold stress.


Subject(s)
Body Temperature Regulation/physiology , Cold Temperature/adverse effects , Menstrual Cycle/physiology , Rest/physiology , Adult , Calorimetry , Clothing , Estradiol/blood , Female , Humans , Progesterone/blood , Shivering/physiology , Skin Temperature/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...