Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Viruses ; 15(12)2023 12 13.
Article in English | MEDLINE | ID: mdl-38140664

ABSTRACT

The European sea bass Dicentrarchus labrax is the main species reared in Mediterranean aquaculture. Its larval stage, which is very sensitive and highly affected by sanitary and environmental conditions, is particularly scrutinized in hatcheries. Recently, a Mediterranean sea bass farm had to deal with an abnormal increase in mortality, especially between 20 and 35 days post-hatching (dph). Biological investigations led to the observation of cytopathic effects on three different fish cell lines after almost 3 weeks of culture at 14 °C in contact with homogenized affected larvae, suggesting the presence of a viral agent. High-throughput sequencing revealed a 6818-nucleotide-long RNA genome with six putative ORFs, corresponding to the organization of viruses belonging to the Totiviridae family. This genome clustered with the newly described and suggested Pistolvirus genus, sharing 45.5% to 37.2% nucleotide identity with other piscine toti-like viruses such as Cyclopterus lumpus toti-like virus (CLuTLV) or piscine myocarditis virus (PMCV), respectively. Therefore, we propose to name this new viral agent sea bass toti-like virus (SBTLV). Specific real-time RT-PCR confirmed the presence of the viral genome in the affected larval homogenate from different production batches and the corresponding cell culture supernatant. Experimental infections performed on sea bass fingerlings did not induce mortality, although the virus could be detected in various organs and a specific immune response was developed. Additional studies are needed to understand the exact involvement of this virus in the mortality observed in hatcheries and the potential associated cofactors.


Subject(s)
Bass , Fish Diseases , Viruses , Animals , Bass/genetics , Genome , Aquaculture , Viruses/genetics , Nucleotides
2.
Vet Res ; 54(1): 66, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608341

ABSTRACT

Cryptosporidium spp. remain a major cause of waterborne diarrhea and illness in developing countries and represent a significant burden to farmers worldwide. Cryptosporidium parvum virus 1 (CSpV1), of the genus Cryspovirus, was first reported to be present in the cytoplasm of C. parvum in 1997. Full-length genome sequences have been obtained from C. parvum from Iowa (Iowa), Kansas (KSU) and China. We aimed at characterizing the genome of CSpV1 from France and used sequence analysis from Cryptosporidium isolates to explore whether CSpV1 genome diversity varies over time, with geographical sampling location, C. parvum genetic diversity, or ruminant host species. A total of 123 fecal samples of cattle, sheep and goats were collected from 17 different French departments (57 diseased animal fecal samples and 66 healthy animal fecal samples). Subtyping analysis of the C. parvum isolates revealed the presence of two zoonotic subtype families IIa and IId. Sequence analysis of CSpV1 revealed that all CSpV1 from France, regardless of the subtype of C. parvum (IIaA15G2R1, IIaA17G2R1 and IIdA18G1R1) are more closely related to CSpV1 from Turkey, and cluster on a distinct branch from CSpV1 collected from C. parvum subtype IIaA15G2R1 from Asia and North America. We also found that samples collected on a given year or successive years in a given location are more likely to host the same subtype of C. parvum and the same CSpV1 strain. Yet, there is no distinct clustering of CSpV1 per French department or ruminants, probably due to trade, and transmission of C. parvum among host species. Our results point towards (i) a close association between CSpV1 movement and C. parvum movement, (ii) recent migrations of C. parvum among distantly located departments and (iii) incidental transmission of C. parvum between ruminants. All together, these results provide insightful information regarding CSpV1 evolution and suggest the virus might be used as an epidemiological tracer for C. parvum. Future studies need to investigate CSpV1's role in C. parvum virulence and on subtype ability to infect different species.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Goat Diseases , Sheep Diseases , Sheep , Animals , Cattle , Goats , Cryptosporidium parvum/genetics , Cryptosporidiosis/epidemiology , France/epidemiology , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology
3.
PLoS One ; 18(8): e0290444, 2023.
Article in English | MEDLINE | ID: mdl-37624818

ABSTRACT

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks (Neovison vison) for fur was detected in various European countries. The risk of a new reservoir being formed and of a reverse zoonosis from minks quickly became a major concern. The aim of this study was to investigate the four French mink farms to see whether SARS-CoV-2 was circulating there in late 2020. The investigations took place during the slaughtering period, thus facilitating different types of sampling (swabs and blood). On one of the four mink farms, 96.6% of serum samples were positive when tested with a SARS-CoV-2 ELISA coated with purified N protein recombinant antigen, and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced from this farm indicated the co-circulation of several lineages at the time of sampling. All the SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled during the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.3 and 1.1% on the other three farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus very similar to a mink coronavirus sequence observed on Danish farms in 2015. In addition, a mink Caliciviridae was identified on one of the two farms positive for Alphacoronavirus. The clinical impact of these inapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses on mink farms could help explain the diversity of clinical symptoms noted on different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 on a mink farm would potentially increase the risk of viral recombination between alpha and betacoronaviruses as already suggested in wild and domestic animals, as well as in humans.


Subject(s)
Alphacoronavirus , COVID-19 , Animals , Humans , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Mink , Farms , Pandemics , France , Asymptomatic Infections
4.
Trop Med Infect Dis ; 8(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37624355

ABSTRACT

The summer temperatures recorded in Poland in 2022 were among the highest in over 30 years and, combined with higher-than-expected rainfall, gave the impression of an almost tropical climate. Such climatic conditions were ideal for the transmission of vector-borne zoonotic diseases such as West Nile fever. In northeastern Poland, in the Mazowieckie region, the Polish event-based surveillance network reported increased fatalities of free-living hooded crows (Corvus corone cornix). West Nile virus (WNV) lineage 2 was identified for the first time as the etiological agent responsible for the death of the birds. WNV was detected in 17 out of the 99 (17.17%) free-living birds tested in this study. All the WNV-infected dead birds were collected in the same area and were diagnosed in September by the NVRI and confirmed by the EURL for equine diseases, ANSES, in October 2022. Unnaturally high temperatures recorded in Poland in 2022 likely favored the infection and spread of the virus in the avian population. A nationwide alert and awareness raising of blood transfusion centers and hospitals was carried out to prevent human infections by WNV.

5.
Microbiol Spectr ; 11(4): e0184423, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37395665

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.


Subject(s)
COVID-19 , Porcine epidemic diarrhea virus , Animals , Swine , COVID-19/epidemiology , Wastewater , SARS-CoV-2 , Soil
6.
PLoS Negl Trop Dis ; 17(7): e0011446, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410714

ABSTRACT

BACKGROUND: Rabies is the oldest fatal zoonotic disease recognised as a neglected tropical disease and is caused by an RNA virus belonging to the genus Lyssavirus, family Rhabdoviridae. METHODOLOGY/PRINCIPAL FINDINGS: A deep molecular analysis was conducted on full-length nucleoprotein (N) gene and whole genome sequences of rabies virus from 37 animal brain samples collected between 2012 and 2017 to study the circulation of rabies virus (RABV) variants. The overall aim was to better understand their distribution in Moldova and north-eastern Romania. Both Sanger and high throughput sequencing on Ion Torrent and Illumina platforms were performed. Phylogenetic analysis of the RABV sequences from both Moldova and Romania revealed that all the samples (irrespective of the year of isolation and the species) belonged to a single phylogenetic group: north-eastern Europe (NEE), clustering into three assigned lineages: RO#5, RO#6 and RO#7. CONCLUSIONS/SIGNIFICANCE: High throughput sequencing of RABV samples from domestic and wild animals was performed for the first time for both countries, providing new insights into virus evolution and epidemiology in this less studied region, expanding our understanding of the disease.


Subject(s)
Rabies virus , Rabies , Animals , Phylogeny , Romania , Moldova , Rabies/epidemiology , Rabies/veterinary , Whole Genome Sequencing
7.
Viruses ; 15(6)2023 05 27.
Article in English | MEDLINE | ID: mdl-37376559

ABSTRACT

The circulation of Bluetongue (BT) and Epizootic Hemorrhagic Disease (EHD) in the Middle East has already been reported following serological analyses carried out since the 1980s, mostly on wild ruminants. Thus, an EHD virus (EHDV) strain was isolated in Bahrain in 1983 (serotype 6), and more recently, BT virus (BTV) serotypes 1, 4, 8 and 16 have been isolated in Oman. To our knowledge, no genomic sequence of these different BTV strains have been published. These same BTV or EHDV serotypes have circulated and, for some of them, are still circulating in the Mediterranean basin and/or in Europe. In this study, we used samples from domestic ruminant herds collected in Oman in 2020 and 2021 for suspected foot-and-mouth disease (FMD) to investigate the presence of BTV and EHDV in these herds. Sera and whole blood from goats, sheep and cattle were tested for the presence of viral genomes (by PCR) and antibodies (by ELISA). We were able to confirm the presence of 5 BTV serotypes (1, 4, 8, 10 and 16) and the circulation of EHDV in this territory in 2020 and 2021. The isolation of a BTV-8 strain allowed us to sequence its entire genome and to compare it with another BTV-8 strain isolated in Mayotte and with homologous BTV sequences available on GenBank.


Subject(s)
Bluetongue virus , Cattle Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Sheep , Cattle , Animals , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Oman/epidemiology , Ruminants , Goats
8.
J Microbiol Methods ; 208: 106719, 2023 05.
Article in English | MEDLINE | ID: mdl-37028518

ABSTRACT

A targeted enrichment method was developed to sequence Xylella fastidiosa genomic DNA directly from plant samples. The method was evaluated on various plant species infected with different strains at different levels of contamination. After enrichment, X. fastidiosa genome coverage was above 99.9% for all tested samples.


Subject(s)
Plant Diseases , Xylella , Xylella/genetics , Whole Genome Sequencing , Sequence Analysis, DNA , Plants
9.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778275

ABSTRACT

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks ( Neovison vison ) for fur was detected in several countries of Europe. The risk of a new reservoir formation and of a reverse zoonosis from minks was then a major concern. The aim of this study was to investigate the four French mink farms for the circulation of SARS-CoV-2 at the end of 2020. The investigations took place during the slaughtering period thus facilitating different types of sampling (swabs and blood). In one of the four mink farms, 96.6% of serum samples were positive in SARS-CoV-2 ELISA coated with purified N protein recombinant antigen and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced in this farm indicated the co-circulation of several lineages at the time of sampling. All SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled at the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.5 and 1.2% in the three other farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus highly similar to a mink coronavirus sequence observed in Danish farms in 2015. In addition, a mink Caliciviridae was identified in one of the two positive farms for Alphacoronavirus . The clinical impact of these unapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses in mink farms could contribute to explain the diversity of clinical symptoms noted in different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 within a mink farm would increase potentially the risk of viral recombination between alpha and betacoronaviruses already suggested in wild and domestic animals, as well as in humans. Author summary: France is not a country of major mink fur production. Following the SARS-CoV-2 contamination of mink farms in Denmark and the Netherlands, the question arose for the four French farms.The investigation conducted at the same time in the four farms revealed the contamination of one of them by a variant different from the one circulating at the same time in Denmark and the Netherlands mink farms. Investigation of three other farms free of SARS-CoV-2 contamination revealed the circulation of other viruses including a mink Alphacoronavirus and Caliciviridae , which could modify the symptomatology of SARS-CoV-2 infection in minks.

10.
Res Vet Sci ; 155: 150-155, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36696786

ABSTRACT

The present study compared multiplex PCR (mPCR) and Whole Genome Sequencing (WGS) using the SCCmecFinder database to identify the Staphylococcal Cassette Chromosome (SCC) mec in five Staphylococcus aureus (SA) and nine non-aureus staphylococci (NAS) isolated from dairy cattle. mPCR identified an SCCmecIV in four SA and one NAS, but could not differentiate between SCCmecII and IV in the fifth SA, that all harbored the mecA gene and were phenotypically resistant to cefoxitin. SCCmecFinder confirmed the presence of an SCCmecIVc(2B) in four SA and of the SCCmecIVa(2B) in the fifth SA and the one NAS. Both methods also detected one untypeable SCCmec in another cefoxitin-resistant NAS harboring the mecA gene and a pseudo SCCmec in one cefoxitin-sensitive NAS harboring one mecC-related gene. No SCCmec elements were identified either in one cefoxitin-sensitive NAS harboring the mecA2 gene, or in five NAS (one resistant and four sensitive to cefoxitin) harboring the mecA1 gene. SCCmecFinder could even not identify the presence of any mecA1 gene in these five NAS, whose presence was nevertheless confirmed by ResFinder. The conclusions of this study are: (i) mPCR and WGS sequencing using SCCmecFinder are complementary methodologies to identify SCCmec; (ii) SCCmecFinder and ResFinder to a lesser extent cannot identify all mec gene allotypes; (iii) a specific classification of the SCCmec in NAS would be epidemiologically helpful; (iv) presence of a mecA gene and a complete SCCmec is linked to cefoxitin resistance, whereas presence of other mec genes and of pseudo or no SCCmec is not.


Subject(s)
Cattle Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Belgium , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Cefoxitin/pharmacology , Chromosomes , Microbial Sensitivity Tests/veterinary , Multiplex Polymerase Chain Reaction/veterinary , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcus/genetics , Staphylococcus aureus/genetics , Whole Genome Sequencing/veterinary
11.
Virus Res ; 323: 198999, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36379388

ABSTRACT

The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.

12.
Viruses ; 14(12)2022 12 13.
Article in English | MEDLINE | ID: mdl-36560781

ABSTRACT

African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989. Compared to Georgia, the ASFV-989 strain genome has a deletion of 7458 nucleotides located in the 5'-end encoding region of MGF 505/360, which allowed for developing a DIVA PCR system. In vitro, in porcine alveolar macrophages, the replication kinetics of the ASFV-989 and Georgia strains were identical. In vivo, specific-pathogen-free (SPF) pigs inoculated with the ASFV-989 strain, either intramuscularly or oronasally, exhibited transient hyperthermia and slightly decreased growth performance. Animals immunized with the ASFV-989 strain showed viremia 100 to 1000 times lower than those inoculated with the Georgia strain and developed a rapid antibody and cell-mediated response. In ASFV-989-immunized pigs challenged 2 or 4 weeks later with the Georgia strain, no symptoms were recorded and no viremia for the challenge strain was detected. These results show that the ASFV-989 strain is a promising non-GMO vaccine candidate that is usable either intramuscularly or oronasally.


Subject(s)
African Swine Fever Virus , African Swine Fever , Vaccines , Viral Vaccines , Swine , Animals , African Swine Fever/prevention & control , African Swine Fever Virus/physiology , Sus scrofa , Immunization
13.
Res Vet Sci ; 152: 647-650, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36215736

ABSTRACT

Escherichia coli producing Extended-Spectrum-ß-Lactamases (ESBL) are a major public health hazard worldwide. The most frequent ESBL belong to the CTX-M family. This study follows their prevalence in pathogenic and non-pathogenic ESBL-producing E. coli isolated from young diarrheic and septicaemic calves over three calving seasons. The triplex PCR targeted three main groups: CTX-M-1, CTX-M-2 and CTX-M-9. Of the 394 isolates studied, 388 (98.5%) were positive, with a majority of CTX-M-1 (243, 61.7%), following by CTX-M-9 (74, 18.8%) and CTX-M-2 (64, 16.2%). The progressive decrease of ESBL-resistance of pathogenic E. coli is not linked to any shift in genetic background, blaCTX-M genes still present in 99% of the isolates, or to the proportion of the three CTX-M groups. Moreover, no significant difference was observed in the CTX-M content between pathogenic and non-pathogenic E. coli.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Escherichia coli Proteins , Cattle , Animals , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Belgium/epidemiology , beta-Lactamases/genetics , Escherichia coli Proteins/genetics , Anti-Bacterial Agents , Cattle Diseases/epidemiology
14.
Transbound Emerg Dis ; 69(6): 4028-4033, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36161777

ABSTRACT

During winter 2020-2021, France and other European countries were severely affected by highly pathogenic avian influenza H5 viruses of the Gs/GD/96 lineage, clade 2.3.4.4b. In total, 519 cases occurred, mainly in domestic waterfowl farms in Southwestern France. Analysis of viral genomic sequences indicated that 3 subtypes of HPAI H5 viruses were detected (H5N1, H5N3, H5N8), but most French viruses belonged to the H5N8 subtype genotype A, as Europe. Phylogenetic analyses of HPAI H5N8 viruses revealed that the French sequences were distributed in 9 genogroups, suggesting 9 independent introductions of H5N8 from wild birds, in addition to the 2 introductions of H5N1 and H5N3.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Poultry Diseases , Animals , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Phylogeny , Influenza A virus/genetics , Animals, Wild , France/epidemiology , Poultry Diseases/epidemiology
15.
Infect Genet Evol ; 104: 105356, 2022 10.
Article in English | MEDLINE | ID: mdl-36038008

ABSTRACT

An H3N1 avian influenza virus was detected in a laying hens farm in May 2019 which had experienced 25% mortality in Northern France. The complete sequencing of this virus showed that all segment sequences belonged to the Eurasian lineage and were phylogenetically very close to many of the Belgian H3N1 viruses detected in 2019. The French virus presented two genetic particularities with NA and NS deletions that could be related to virus adaptation from wild to domestic birds and could increase virulence, respectively. Molecular data of H3N1 viruses suggest that these two deletions occurred at two different times.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Chickens , Female , Influenza A virus/genetics , Phylogeny
16.
Microbiol Resour Announc ; 11(7): e0010222, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35861555

ABSTRACT

We report the full-length genome sequence (compared to reference sequences) of a novel European variant strain of infectious bursal disease virus (IBDV), designated 19P009381 (AxB1). This should help to further identify such viruses in Europe.

17.
Viruses ; 14(7)2022 06 25.
Article in English | MEDLINE | ID: mdl-35891373

ABSTRACT

Infectious Bronchitis virus (IBV) continues to cause significant economic losses for the chicken industry despite the use of many live IBV vaccines around the world. Several authors have suggested that vaccine-induced partial protection may contribute to the emergence of new IBV strains. In order to study this hypothesis, three passages of a challenge IBV were made in SPF chickens sham inoculated or vaccinated at day of age using a live vaccine heterologous to the challenge virus. All birds that were challenged with vaccine heterologous virus were positive for viral RNA. NGS analysis of viral RNA in the unvaccinated group showed a rapid selection of seven genetic variants, finally modifying the consensus genome of the viral population. Among them, five were non-synonymous, modifying one position in NSP 8, one in NSP 13, and three in the Spike protein. In the vaccinated group, one genetic variant was selected over the three passages. This synonymous modification was absent from the unvaccinated group. Under these conditions, the genome population of an IBV challenge virus evolved rapidly in both heterologous vaccinated and non-vaccinated birds, while the genetic changes that were selected and the locations of these were very different between the two groups.


Subject(s)
Bronchitis , Communicable Diseases , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Chickens , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Evolution, Molecular , Infectious bronchitis virus/genetics , RNA, Viral/genetics , Vaccines, Attenuated , Viral Vaccines/genetics
18.
Microbiol Spectr ; 10(3): e0013822, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35536058

ABSTRACT

Because parasites have an inextricable relationship with their host, they have the potential to serve as viral reservoirs or facilitate virus host shifts. And yet, little is known about viruses infecting parasitic hosts except for blood-feeding arthropods that are well-known vectors of zoonotic viruses. Herein, we uncovered viruses of flatworms (phylum Platyhelminthes, group Neodermata) that specialize in parasitizing vertebrates and their ancestral free-living relatives. We discovered 115 novel viral sequences, including 1 in Macrostomorpha, 5 in Polycladida, 44 in Tricladida, 1 in Monogenea, 15 in Cestoda, and 49 in Trematoda, through data mining. The majority of newly identified viruses constitute novel families or genera. Phylogenetic analyses show that the virome of flatworms changed dramatically during the transition of neodermatans to a parasitic lifestyle. Most Neodermata viruses seem to codiversify with their host, with the exception of rhabdoviruses, which may switch hosts more often, based on phylogenetic relationships. Neodermata rhabdoviruses also have a position ancestral to vertebrate-associated rhabdo viruses, including lyssaviruses, suggesting that vertebrate-associated rhabdoviruses emerged from a flatworm rhabdovirus in a parasitized host. This study reveals an extensive diversity of viruses in Platyhelminthes and highlights the need to evaluate the role of viral infection in flatworm-associated diseases. IMPORTANCE Little is known about the diversity of parasite-associated viruses and how these viruses may impact parasite fitness, parasite-host interactions, and virus evolution. The discovery of over a hundred viruses associated with a range of free-living and parasitic flatworms, including parasites of economic and clinical relevance, allowed us to compare the viromes of flatworms with contrasting lifestyles. The results suggest that flatworms acquired novel viruses after their transition to a parasitic lifestyle and highlight the possibility that they acquired viruses from their hosts and vice versa. An interesting example is the discovery of flatworm rhabdoviruses that have a position ancestral to rabies viruses and other vertebrate-associated rhabdoviruses, demonstrating that flatworm-associated viruses have emerged in a vertebrate host at least once in history. Therefore, parasitic flatworms may play a role in virus diversity and emergence. The roles that parasite-infecting viruses play in parasite-associated diseases remain to be investigated.


Subject(s)
Parasites , Platyhelminths , Viruses , Animals , Host-Parasite Interactions , Phylogeny , Platyhelminths/genetics
19.
Sci Data ; 9(1): 190, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484273

ABSTRACT

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Subject(s)
Foodborne Diseases , Listeria monocytogenes , Listeriosis , Animals , Ecosystem , Foodborne Diseases/microbiology , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/microbiology
20.
J Fish Dis ; 45(5): 707-716, 2022 May.
Article in English | MEDLINE | ID: mdl-35172021

ABSTRACT

Gilthead seabream represents a species of importance in Mediterranean aquaculture. The larval stage is particularly sensitive and frequently impacted in suboptimal environmental or sanitary conditions. In the present study, investigations were carried out in a seabream hatchery following an unusual mortality reaching 70% among 50-day post-hatching. Anorexia, loss of appetite and abnormal swimming behaviour were observed in absence of parasites or pathogenic bacteria. Proliferation of rod-shaped bacteria in the gut lumen was associated with focal degeneration in the intestinal mucosa. Cytopathic effects on an EK-1 cell line after 21 days of culture at 14°C and 20°C in contact with homogenized affected larvae revealed the presence of a viral agent. Molecular characterization by high-throughput sequencing showed a typical picornavirus genome organization with a polyprotein precursor of 2276 amino acids sharing 46.3% identity with that of the Eel Picornavirus-1. A specific real-time PCR confirmed the presence of the viral genome in affected larval homogenate and corresponding cell culture supernatant. We propose the name Potamipivirus daurada for this novel species within the genus Potamipivirus. The etiological role of this virus remains uncertain at this time, and future studies will be necessary to investigate its prevalence in natural and aquaculture-reared populations as well as its ability to cause diseases in gilthead seabream.


Subject(s)
Fish Diseases , Sea Bream , Animals , DNA Viruses/genetics , Larva , Real-Time Polymerase Chain Reaction , Sea Bream/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...