Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Brain Res Bull ; 137: 120-131, 2018 03.
Article in English | MEDLINE | ID: mdl-29183693

ABSTRACT

Glutathione provides protection from oxidative stress-induced damage through the reduction of reactive oxygen species for the maintenance of oxidant homeostasis. Our purpose was to test the effects of depleting tissue GSH by buthionine sulfoximine on brain oxidative metabolism and cognitive performance in rats. Glutathione depletion induced a compensatory response on antioxidant enzymes and increase of cell damage indicators in all the examined cerebral areas at 24h. The effect of GSH depletion on spatial memory recorded at 24h post-surgery showed significant differences between experimental groups for the escape latency to the platform and percentage of total swim distance spending in the target quadrant. The acquisition of a new spatial condition 24h after GSH depletion revealed differences between experimental groups for latencies, swim distance, swim distance in the target quadrant and percentage of total swim distance spending in the target quadrant. The ability of BSO treated group to maintain a restraining behavior was significantly smaller compared with control group. We founded significant correlation among variables of the behavioral studies and oxidative stress indicators. In conclusion, our model shows how increased ROS production by transitory glutathione depletion constitutes the primary cause to neuronal metabolic stress with alterations in synaptic signaling and cognitive deficits.


Subject(s)
Brain Diseases/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Glutathione/deficiency , Inflammation/metabolism , Animals , Avoidance Learning/physiology , Buthionine Sulfoximine , Disease Models, Animal , Male , Maze Learning/physiology , Oxidative Stress/physiology , Random Allocation , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spatial Memory/physiology , Tumor Necrosis Factor-alpha/metabolism
2.
Acta biol. colomb ; 20(1): 15-25, ene.-abr. 2015. ilus, tab
Article in Spanish | LILACS | ID: lil-734897

ABSTRACT

A escala mundial, la isquemia cerebral constituye una de las principales causas de muerte, por lo que los modelos animales de isquemia cerebral son extensamente usados tanto en el estudio de la pato-fisiología del fenómeno isquémico; como en la evaluación de agentes terapéuticos con posible efecto protector o regenerador. Los objetivos de este estudio fueron examinar la presencia de daño neuronal en diferentes áreas cerebrales como consecuencia del evento isquémico; así como evaluar consecuencias de este proceder sobre los procesos de memoria-aprendizaje. Los grupos de estudios incluyeron un grupo experimental de animales isquémicos, 30 ratas a las que se les ocluyó ambas arterias carótidas comunes, y un grupo control. Fue evaluada la expresión de genes isquémicos e inflamatorios por técnicas de qPCR 24 horas post lesión, la morfología del tejido cerebral en áreas de corteza, estriado e hipocampo, siete días post lesión y los procesos de memoria y aprendizaje, 12 días post lesión. Los estudios morfológicos evidenciaron que el proceder induce la muerte de poblaciones celulares en corteza, estriado e hipocampo; la isquemia modificó la expresión los genes gfap, ho-1, il-6, il-17 e ifn-γ, lo cual puede ser utilizado como un marcador de proceso isquémico temprano. Adicionalmente, el daño isquémico causó un deterioro en la memoria espacial. Esta caracterización nos permite contar con un modelo experimental donde desarrollar futuros estudios sobre la patofisiología de los eventos isquémicos y la evaluación de estrategias terapéuticas.


Cerebral ischemia is a major cause of death, for this reason animal models of cerebral ischemia are widely used to study both the pathophysiology of ischemic phenomenon and the evaluation of possible therapeutic agents with protective or regenerative properties. The objectives of this study were to examine the presence of neuronal damage in different brain areas following the ischemic event, and assess consequences of such activities on the processes of memory and learning. The study group included an experimental group ischemic animals (30 rats with permanent bilateral occlusion of the carotids), and a control group. Was evaluated gene expression and inflammatory ischemic by qPCR techniques 24h post injury, brain tissue morphology in areas of cortex, striatum and hippocampus seven days post injury and processes of memory and learning, 12 days post injury. The morphological studies showed that the procedure induces death of cell populations in cortex, striatum and hippocampus, ischemia modified gfap gene expression and ho, il-6, il-17 and ifn-γ, which can be used as a marker of early ischemic process. Additionally, the ischemic injury caused spatial memory decline. This characterization gives us an experimental model to develop future studies on the pathophysiology of ischemic events and assessing therapeutic strategies.

3.
Behav Brain Res ; 271: 286-93, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24912031

ABSTRACT

Glutathione is the major antioxidant in the living cells. Its deficit has been linked to neurodegenerative disorders as Parkinson's disease but its role in the etiology of nigral degeneration and sensory-motor performance has been poorly explored. To evaluate the effect of glutathione depletion on nigro-striatal oxidative metabolism and sensory-motor performance in rats, l-buthionine sulfoximine (15 mM) or saline solution was injected into substantia nigra pars compacta (SNpc). Then, oxidative metabolism was studied 24h and 7 days later in SNpc and corpus striatum (CS). Tyrosine hydroxylase and GFAP immunohistochemistry assays were carried out at 7 days. In addition, animals were evaluated in open field, adhesive removal, staircase and traverse beam tests. Glutathione depletion induced compensatory response in catalase activity and glial response in the in SNpc and no oxidative damage was observed. However, a loss in dopaminergic cells was found. At the same time, animals with glutathione depletion have shown poor performance in behavioral tests except for staircase test. These results suggest that glutathione depletion can be related to sensory-motor dysfunction.


Subject(s)
Buthionine Sulfoximine/toxicity , Glutathione/metabolism , Pars Compacta/metabolism , Psychomotor Performance/drug effects , Animals , Corpus Striatum/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glial Fibrillary Acidic Protein/metabolism , Locomotion/drug effects , Male , Microinjections , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism
4.
Neuroscience ; 247: 351-63, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23732233

ABSTRACT

Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinson's disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.


Subject(s)
Deep Brain Stimulation/standards , Pedunculopontine Tegmental Nucleus/anatomy & histology , Pedunculopontine Tegmental Nucleus/surgery , Animals , Deep Brain Stimulation/methods , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Pedunculopontine Tegmental Nucleus/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...