Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 128(3): 357-369, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33949648

ABSTRACT

BACKGROUND AND AIMS: The persistence of a plant population under a specific local climatic regime requires phenotypic adaptation with underlying particular combinations of alleles at adaptive loci. The level of allele diversity at adaptive loci within a natural plant population conditions its potential to evolve, notably towards adaptation to a change in climate. Investigating the environmental factors that contribute to the maintenance of adaptive diversity in populations is thus worthwhile. Within-population allele diversity at adaptive loci can be partly driven by the mean climate at the population site but also by its temporal variability. METHODS: The effects of climate temporal mean and variability on within-population allele diversity at putatively adaptive quantitative trait loci (QTLs) were evaluated using 385 natural populations of Lolium perenne (perennial ryegrass) collected right across Europe. For seven adaptive traits related to reproductive phenology and vegetative potential growth seasonality, the average within-population allele diversity at major QTLs (HeA) was computed. KEY RESULTS: Significant relationships were found between HeA of these traits and the temporal mean and variability of the local climate. These relationships were consistent with functional ecology theory. CONCLUSIONS: Results indicated that temporal variability of local climate has likely led to fluctuating directional selection, which has contributed to the maintenance of allele diversity at adaptive loci and thus potential for further adaptation.


Subject(s)
Climate Change , Lolium , Selection, Genetic , Adaptation, Physiological/genetics , Alleles , Genetics, Population , Lolium/genetics , Phenotype , Quantitative Trait Loci
2.
Mol Phylogenet Evol ; 107: 367-381, 2017 02.
Article in English | MEDLINE | ID: mdl-27919807

ABSTRACT

Although hybridisation through genome duplication is well known, hybridisation without genome duplication (homoploid hybrid speciation, HHS) is not. Few well-documented cases have been reported. A possible instance of HHS in Medicago prostrata Jacq. was suggested previously, based on only two genes and one individual. We tested whether this species was formed through HHS by sampling eight nuclear loci and 22 individuals, with additional individuals from related species, using gene capture and Illumina sequencing. Phylogenetic inference and coalescent simulations were performed to infer the causes of gene tree incongruence. We found no evidence that phylogenetic differences among M. prostrata individuals were the result of HHS. Instead, an autopolyploid origin of tetraploids with introgression from tetraploids of the M. sativa complex is likely. We argue that tetraploid M. prostrata individuals constitute a new species, characterised by a partially non-overlapping distribution and distinctive alleles (from the M. sativa complex). No gene flow from tetraploid to diploid M. prostrata is apparent, suggesting partial reproductive isolation. Thus, speciation via autopolyploidy appears to have been reinforced by introgression. This raises the intriguing possibility that introgressed alleles may be responsible for the increased range exploited by tetraploid M. prostrata with respect to that of the diploids.


Subject(s)
Inbreeding , Medicago/genetics , Polyploidy , Alleles , Base Sequence , Chromosomes, Plant/genetics , Computer Simulation , Genes, Plant , Hybridization, Genetic , Medicago/anatomy & histology , Phylogeny , Recombination, Genetic/genetics , Species Specificity
3.
J Evol Biol ; 28(4): 851-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25722058

ABSTRACT

The role of pollinators in floral divergence has long attracted the attention of evolutionary biologists. Although abundant studies have reported the effect of pollinators on flower-shape variation and plant speciation, the influence of pollinators on plant species differentiation during rapid radiations and the specific consequences of shifts among similar pollinators are not well understood. Here, we evaluate the association between pollinators and floral morphology in a closely related and recently diversifying clade of Linaria species (sect. Supinae subsect. Supinae). Our approach combined pollinator observations, functional floral morphometric measures and phylogenetic comparative analyses. The fauna visiting Linaria species was determined by extensive surveys and categorized by a modularity algorithm, and the size and shape of flowers were analysed by means of standard and geometric morphometric measures. Standard measures failed to find relationships between the sizes of representative pollinators and flowers. However, discriminant function analyses of geometric morphometric data revealed that pollination niches are finer predictors of flower morphologies in Linaria if compared with phylogenetic relationships. Species with the most restrictive flowers displayed the most slender spurs and were pollinated by bees with larger proboscides. These restrictive flower shapes likely appeared more than once during the evolutionary history of the study group. We show that floral variation can be driven by shifts between pollinators that have been traditionally included in a single functional group, and discuss the consequences of such transitions for plant species differentiation during rapid radiations.


Subject(s)
Bees , Flowers/anatomy & histology , Linaria/anatomy & histology , Pollination , Animals , Biological Evolution , Body Size , Flowers/physiology , Linaria/physiology , Phylogeny
4.
Mol Ecol ; 22(22): 5651-68, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24134639

ABSTRACT

The evolutionary patterns of the Mediterranean flora during the Quaternary have been relatively well documented based on phylogenetic and biogeographic analyses, but few studies have addressed the evolutionary traits that determined diversification and range expansion success during this period. We analysed previously published and newly generated sequences of three plastid noncoding regions (rpl32-trnL(UAG) , trnS-trnG and trnL-trnF), the nuclear ribosomal internal transcribed spacer (ITS) and a low-copy nuclear gene intron (AGT1) of Linaria sect. Supinae, a group of angiosperms that diversified in the Quaternary. The origin and recent colonization dynamics of closely related lineages were inferred by biogeographic reconstruction and phylogeographic analyses, while breeding system experiments coupled with ecological and morphological data were used to test association with range expansion and diversification. A combination of traits, including selfing, short lifespan and the ability to tolerate a wide variety of substrates, were key factors underlying range expansion after long-distance dispersal throughout the Mediterranean basin. By contrast, self-incompatibility may have promoted higher diversification rates in narrow ranges of the Iberian Peninsula. We argue that a few traits contributed to the adoption of two contrasting strategies that may have been predominant in the evolution of Mediterranean angiosperms.


Subject(s)
Genetic Speciation , Linaria/genetics , Adaptation, Biological/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Geography , Haplotypes , Introns , Mediterranean Region , Phylogeny , Reproduction
5.
Mol Ecol ; 22(16): 4177-4195, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23844700

ABSTRACT

Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine-Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of L. glacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming.


Subject(s)
Conservation of Natural Resources , Global Warming , Linaria/classification , Linaria/genetics , Models, Genetic , Bayes Theorem , Ecosystem , Genetics, Population , Molecular Sequence Data , Plants/classification , Plants/genetics , Population Density , Sequence Analysis, DNA , Spain , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...