Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 629, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245535

ABSTRACT

A variety of topological Hamiltonians have been demonstrated in photonic platforms, leading to fundamental discoveries and enhanced robustness in applications such as lasing, sensing, and quantum technologies. To date, each topological photonic platform implements a specific type of Hamiltonian with inexistent or limited reconfigurability. Here, we propose and demonstrate different topological models by using the same reprogrammable integrated photonics platform, consisting of a hexagonal mesh of silicon Mach-Zehnder interferometers with phase shifters. We specifically demonstrate a one-dimensional Su-Schrieffer-Heeger Hamiltonian supporting a localized topological edge mode and a higher-order topological insulator based on a two-dimensional breathing Kagome Hamiltonian with three corner states. These results highlight a nearly universal platform for topological models that may fast-track research progress toward applications of topological photonics and other coupled systems.

2.
Opt Lett ; 45(13): 3365-3368, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630846

ABSTRACT

We study the propagation of ultrashort pulses in optical fiber with gain and positive (or normal) quartic dispersion by self-similarity analysis of the modified nonlinear Schrödinger equation. We find an exact asymptotic solution, corresponding to a triangle-like T4/3 intensity profile, with a T1/3 chirp, which is confirmed by numerical simulations. This solution follows different amplitude and width scaling compared to the conventional case with quadratic dispersion. We also suggest, and numerically investigate, a fiber laser consisting of components with positive quartic dispersion that emits quartic self-similar pulses.

3.
Opt Lett ; 44(13): 3306-3309, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31259946

ABSTRACT

We numerically solve a generalized nonlinear Schrödinger equation and find a family of pure-quartic solitons (PQSs), existing through a balance of positive Kerr nonlinearity and negative quartic dispersion. These solitons have oscillatory tails, which can be understood analytically from the properties of linear waves with quartic dispersion. By computing the linear eigenspectrum of the solitons, we show that they are stable, but that they possess a nontrivial internal mode close to the radiation continuum. We also demonstrate evolution into a PQS from Gaussian initial conditions. The energy-width scaling of PQSs differs strongly from that for conventional solitons, opening up possibilities for PQS lasers.

4.
Science ; 362(6414): 568-571, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30385574

ABSTRACT

The robust generation and propagation of multiphoton quantum states are crucial for applications in quantum information, computing, and communications. Although photons are intrinsically well isolated from the thermal environment, scaling to large quantum optical devices is still limited by scattering loss and other errors arising from random fabrication imperfections. The recent discoveries regarding topological phases have introduced avenues to construct quantum systems that are protected against scattering and imperfections. We experimentally demonstrate topological protection of biphoton states, the building block for quantum information systems. We provide clear evidence of the robustness of the spatial features and the propagation constant of biphoton states generated within a nanophotonics lattice with nontrivial topology and propose a concrete path to build robust entangled states for quantum gates.

6.
Phys Rev Lett ; 116(16): 163901, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152805

ABSTRACT

One-dimensional models with topological band structures represent a simple and versatile platform to demonstrate novel topological concepts. Here we experimentally study topologically protected states in silicon at the interface between two dimer chains with different Zak phases. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state. These results provide a new paradigm for topologically protected waveguiding in a complementary metal-oxide-semiconductor compatible platform and highlight the novel concept of isolating topological and trivial defect modes in the same system that can have important implications in topological physics.

8.
Nat Commun ; 7: 10427, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26822758

ABSTRACT

Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...