Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2319163121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696472

ABSTRACT

DELLA proteins are negative regulators of the gibberellin response pathway in angiosperms, acting as central hubs that interact with hundreds of transcription factors (TFs) and regulators to modulate their activities. While the mechanism of TF sequestration by DELLAs to prevent DNA binding to downstream targets has been extensively documented, the mechanism that allows them to act as coactivators remains to be understood. Here, we demonstrate that DELLAs directly recruit the Mediator complex to specific loci in Arabidopsis, facilitating transcription. This recruitment involves DELLA amino-terminal domain and the conserved MED15 KIX domain. Accordingly, partial loss of MED15 function mainly disrupted processes known to rely on DELLA coactivation capacity, including cytokinin-dependent regulation of meristem function and skotomorphogenic response, gibberellin metabolism feedback, and flavonol production. We have also found that the single DELLA protein in the liverwort Marchantia polymorpha is capable of recruiting MpMED15 subunits, contributing to transcriptional coactivation. The conservation of Mediator-dependent transcriptional coactivation by DELLA between Arabidopsis and Marchantia implies that this mechanism is intrinsic to the emergence of DELLA in the last common ancestor of land plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Marchantia , Mediator Complex , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mediator Complex/metabolism , Mediator Complex/genetics , Marchantia/genetics , Marchantia/metabolism , Gibberellins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Plant Physiol ; 195(1): 640-651, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38285074

ABSTRACT

The evolutionarily conserved POLYMERASE-ASSOCIATED FACTOR1 complex (Paf1C) participates in transcription, and research in animals and fungi suggests that it facilitates RNA POLYMERASE II (RNAPII) progression through chromatin. We examined the genomic distribution of the EARLY FLOWERING7 (ELF7) and VERNALIZATION INDEPENDENCE3 subunits of Paf1C in Arabidopsis (Arabidopsis thaliana). The occupancy of both subunits was confined to thousands of gene bodies and positively associated with RNAPII occupancy and the level of gene expression, supporting a role as a transcription elongation factor. We found that monoubiquitinated histone H2B, which marks most transcribed genes, was strongly reduced genome wide in elf7 seedlings. Genome-wide profiling of RNAPII revealed that in elf7 mutants, RNAPII occupancy was reduced throughout the gene body and at the transcription end site of Paf1C-targeted genes, suggesting a direct role for the complex in transcription elongation. Overall, our observations suggest a direct functional link between Paf1C activity, monoubiquitination of histone H2B, and the transition of RNAPII to productive elongation. However, for several genes, Paf1C may also act independently of H2Bub deposition or occupy these genes more stable than H2Bub marking, possibly reflecting the dynamic nature of Paf1C association and H2Bub turnover during transcription.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Histones , RNA Polymerase II , Transcription, Genetic , Ubiquitination , Histones/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Genome, Plant , Transcription Factors/metabolism , Transcription Factors/genetics
3.
STAR Protoc ; 5(1): 102786, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38113142

ABSTRACT

The cellular and molecular mechanisms underlying the establishment of vascular connections between primary and lateral roots have recently gained significant attention. Here, I present a protocol to visualize and quantify xylem connection defects during lateral root development. I describe steps for employing stains to infer whether the defects observed in xylem bridges are associated with alterations in the xylem differentiation program, including programmed cell death and secondary cell wall deposition. For complete details on the use and execution of this protocol, please refer to Blanco-Touriñán et al. (2023) and Ursache et al. (2018).1,2.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Xylem/metabolism , Apoptosis , Plant Roots
4.
Methods Mol Biol ; 2722: 3-15, 2024.
Article in English | MEDLINE | ID: mdl-37897596

ABSTRACT

Fluorescent dyes are often used to observe transport mechanisms in plant vascular tissues. However, it has been technically challenging to apply fluorescent dyes on roots to monitor xylem transport in vivo. Here, we present a fast, noninvasive, and high-throughput protocol to monitor xylem transport in seedlings. Using the fluorescent dyes 5(6)-carboxyfluorescein diacetate (CFDA) and Rhodamine WT, we were able to observe xylem transport on a cellular level in Arabidopsis thaliana roots. We describe how to apply these dyes on primary roots of young seedlings, how to monitor root-to-shoot xylem transport, and how to measure xylem transport velocity in roots. Moreover, we show that our protocol can also be applied to lateral roots and grafted seedlings to assess xylem (re)connection. Altogether, these techniques are useful for investigating xylem functionality in diverse experimental setups.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Seedlings , Fluorescent Dyes , Xylem , Plant Roots
5.
Curr Opin Plant Biol ; 76: 102461, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37774454

ABSTRACT

The vascular system was essential for plants to colonize land by facilitating the transport of water, nutrients, and minerals throughout the body. Our current knowledge on the molecular-genetic control of vascular tissue specification and differentiation is mostly based on studies in the Arabidopsis primary root. To what degree these regulatory mechanisms in the root meristem can be extrapolated to vascular tissue development in other organs is a question of great interest. In this review, we discuss the most recent progress on cotyledon vein formation, with a focus on polar auxin transport-dependent and -independent mechanisms. We also provide an overview of vasculature formation in postembryonic organs, namely lateral roots, which is more complex than anticipated as several tissues of the parent root must act in a spatio-temporally coordinated manner.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Roots/genetics , Indoleacetic Acids , Meristem/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
6.
Curr Biol ; 33(9): 1716-1727.e3, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37071995

ABSTRACT

The postembryonic formation of lateral roots (LRs) starts in internal root tissue, the pericycle. An important question of LR development is how the connection of the primary root vasculature with that of the emerging LR is established and whether the pericycle and/or other cell types direct this process. Here, using clonal analysis and time-lapse experiments, we show that both the procambium and pericycle of the primary root (PR) affect the LR vascular connectivity in a coordinated manner. We show that during LR formation, procambial derivates switch their identity and become precursors of xylem cells. These cells, together with the pericycle-origin xylem, participate in the formation of what we call a "xylem bridge" (XB), which establishes the xylem connection between the PR and the nascent LR. If the parental protoxylem cell fails to differentiate, XB is still sometimes formed but via a connection with metaxylem cells, highlighting that this process has some plasticity. Using mutant analyses, we show that the early specification of XB cells is determined by CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors (TFs). Subsequent XB cell differentiation is marked by the deposition of secondary cell walls (SCWs) in spiral and reticulate/scalariform patterns, which is dependent on the VASCULAR-RELATED NAC-DOMAIN (VND) TFs. XB elements were also observed in Solanum lycopersicum, suggesting that this mechanism may be more widely conserved in plants. Together, our results suggest that plants maintain vascular procambium activity, which safeguards the functionality of newly established lateral organs by assuring the continuity of the xylem strands throughout the root system.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Plant Roots , Xylem , Cell Differentiation , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism
7.
Nat Plants ; 9(4): 535-543, 2023 04.
Article in English | MEDLINE | ID: mdl-36914897

ABSTRACT

DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant's life1-3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8-10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.


Subject(s)
Arabidopsis Proteins , Arabidopsis Proteins/metabolism , Gene Regulatory Networks , Gibberellins/metabolism , Plants/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism
8.
Plant Physiol ; 191(2): 1036-1051, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36423226

ABSTRACT

Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Animals , Alternative Splicing/genetics , Arabidopsis/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Temperature , RNA Splicing/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mammals/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
9.
New Phytol ; 236(5): 1734-1747, 2022 12.
Article in English | MEDLINE | ID: mdl-36039703

ABSTRACT

Efficient root-to-shoot delivery of water and nutrients in plants relies on the correct differentiation of xylem cells into hollow elements. While auxin is integral to the formation of xylem cells, it remains poorly characterized how each subcellular pool of this hormone regulates this process. Combining genetic and cell biological approaches, we investigated the bipartite activity of nucleoplasmic vs plasma membrane-associated phosphatidylinositol 4-phosphate kinases PIP5K1 and its homolog PIP5K2 in Arabidopsis thaliana roots and uncovered a novel mechanism by which phosphoinositides integrate distinct aspects of the auxin signaling cascade and, in turn, regulate the onset of xylem differentiation. The appearance of undifferentiated cells in protoxylem strands of pip5k1 pip5k2 is phenomimicked in auxin transport and perception mutants and can be partially restored by the nuclear residence of PIP5K1. By contrast, exclusion of PIP5K1 from the nucleus hinders the auxin-mediated induction of the xylem master regulator VASCULAR RELATED NAC DOMAIN (VND) 7. A xylem-specific increase of auxin levels abolishes pip5k1 pip5k2 vascular defects, indicating that the establishment of auxin maxima is required to activate VND7-mediated xylem differentiation. Our results describe a new mechanism by which distinct subcellular pools of phosphoinositides integrate auxin transport and perception to initiate xylem differentiation in a spatiotemporal manner.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Phosphatidylinositols , Xylem/metabolism , Indoleacetic Acids , Plant Roots/metabolism , Gene Expression Regulation, Plant
10.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35723181

ABSTRACT

Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cotyledon/genetics , Cotyledon/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Membrane Proteins/metabolism
11.
Plant J ; 110(1): 43-57, 2022 04.
Article in English | MEDLINE | ID: mdl-35192733

ABSTRACT

Ovule development is a key process for plant reproduction, helping to ensure correct seed production. Several molecular factors and plant hormones such as gibberellins are involved in ovule initiation and development. Gibberellins control ovule development by the destabilization of DELLA proteins, whereas DELLA activity has been shown to act as a positive factor for ovule primordia emergence. But the molecular mechanism by which DELLA acts in ovule primordia initiation remained unknown. In this study we report that DELLA proteins participate in ovule initiation by the formation of a protein complex with the CUC2 transcription factor. The DELLA protein GAI requires CUC2 to promote ovule primordia formation, through the direct GAI-CUC2 interaction in placental cells that would determine the boundary regions between ovules during pistil development. Analysis of GAI-CUC2 interaction and co-localization in the placenta supports this hypothesis. Moreover, molecular analysis identified a subset of the loci for which the GAI protein may act as a transcriptional co-regulator in a CUC2-dependent manner. The DELLA-CUC2 complex is a component of the gene regulatory network controlling ovule primordia initiation in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Female , Gene Expression Regulation, Plant , Gibberellins/metabolism , Humans , Ovule/metabolism , Placenta/metabolism , Pregnancy
12.
Plant Physiol ; 187(3): 1534-1550, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34618031

ABSTRACT

The prefoldin complex (PFDc) was identified in humans as a co-chaperone of the cytosolic chaperonin T-COMPLEX PROTEIN RING COMPLEX (TRiC)/CHAPERONIN CONTAINING TCP-1 (CCT). PFDc is conserved in eukaryotes and is composed of subunits PFD1-6, and PFDc-TRiC/CCT folds actin and tubulins. PFDs also participate in a wide range of cellular processes, both in the cytoplasm and in the nucleus, and their malfunction causes developmental alterations and disease in animals and altered growth and environmental responses in yeast and plants. Genetic analyses in yeast indicate that not all of their functions require the canonical complex. The lack of systematic genetic analyses in plants and animals, however, makes it difficult to discern whether PFDs participate in a process as the canonical complex or in alternative configurations, which is necessary to understand their mode of action. To tackle this question, and on the premise that the canonical complex cannot be formed if one subunit is missing, we generated an Arabidopsis (Arabidopsis thaliana) mutant deficient in the six PFDs and compared various growth and environmental responses with those of the individual mutants. In this way, we demonstrate that the PFDc is required for seed germination, to delay flowering, or to respond to high salt stress or low temperature, whereas at least two PFDs redundantly attenuate the response to osmotic stress. A coexpression analysis of differentially expressed genes in the sextuple mutant identified several transcription factors, including ABA INSENSITIVE 5 (ABI5) and PHYTOCHROME-INTERACTING FACTOR 4, acting downstream of PFDs. Furthermore, the transcriptomic analysis allowed assigning additional roles for PFDs, for instance, in response to higher temperature.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Molecular Chaperones/genetics , Transcription Factors/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Molecular Chaperones/metabolism , Transcription Factors/metabolism
15.
Plant Cell Physiol ; 61(11): 1891-1901, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32886774

ABSTRACT

DELLA proteins are the negative regulators of the gibberellin (GA) signaling pathway. GAs have a pervasive effect on plant physiology, influencing processes that span the entire life cycle of the plant. All the information encoded by GAs, either environmental or developmental in origin, is canalized through DELLAs, which modulate the activity of many transcription factors and transcriptional regulators. GAs unlock the signaling pathway by triggering DELLA polyubiquitination and degradation by the 26S proteasome. Recent reports indicate, however, that there are other pathways that trigger DELLA polyubiquitination and degradation independently of GAs. Moreover, results gathered during recent years indicate that other post-translational modifications (PTMs), namely phosphorylation, SUMOylation and glycosylation, modulate DELLA function. The convergence of several PTMs in DELLA therefore highlights the strict regulation to which these proteins are subject. In this review, we summarize these discoveries and discuss DELLA PTMs from an evolutionary perspective and examine the possibilities these and other post-translational regulations offer to improve DELLA-dependent agronomic traits.


Subject(s)
Gene Expression Regulation, Plant/physiology , Plant Proteins/physiology , Protein Processing, Post-Translational , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plant Physiological Phenomena , Plant Proteins/metabolism , Plants/metabolism , Protein Processing, Post-Translational/physiology , Signal Transduction
16.
Nucleic Acids Res ; 48(11): 6280-6293, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32396196

ABSTRACT

Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2-8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2-8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2-8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Multiprotein Complexes/metabolism , RNA-Binding Proteins/metabolism , Spliceosomes/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Multiprotein Complexes/chemistry , Mutation , Protein Binding , RNA Splicing , Spliceosomes/chemistry
17.
Proc Natl Acad Sci U S A ; 117(24): 13792-13799, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32471952

ABSTRACT

DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/chemistry , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Protein Stability , Proteolysis , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
18.
EMBO Rep ; 21(2): e48466, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31867824

ABSTRACT

Communication between the gametophytes is vital for angiosperm fertilisation. Multiple CrRLK1L-type receptor kinases prevent premature pollen tube burst, while another CrRLK1L protein, FERONIA (FER), is required for pollen tube reception in the female gametophyte. We report here the identification of two additional CrRLK1L homologues, HERCULES RECEPTOR KINASE 1 (HERK1) and ANJEA (ANJ), which act redundantly to promote pollen tube growth arrest at the synergid cells. HERK1 and ANJ localise to the filiform apparatus of the synergid cells in unfertilised ovules, and in herk1 anj mutants, a majority of ovules remain unfertilised due to pollen tube overgrowth, together indicating that HERK1 and ANJ act as female determinants for fertilisation. As in fer mutants, the synergid cell-specific, endomembrane protein NORTIA (NTA) is not relocalised after pollen tube reception; however, unlike fer mutants, reactive oxygen species levels are unaffected in herk1 anj double mutants. Both ANJ and HERK1 associate with FER and its proposed co-receptor LORELEI (LRE) in planta. Together, our data indicate that HERK1 and ANJ act with FER to mediate female-male gametophyte interactions during plant fertilisation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphotransferases/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Protein Kinases/genetics , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 116(37): 18710-18716, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31444299

ABSTRACT

In plants, secondary growth results in radial expansion of stems and roots, generating large amounts of biomass in the form of wood. Using genome-wide association studies (GWAS)-guided reverse genetics in Arabidopsis thaliana, we discovered SOBIR1/EVR, previously known to control plant immunoresponses and abscission, as a regulator of secondary growth. We present anatomical, genetic, and molecular evidence indicating that SOBIR1/EVR prevents the precocious differentiation of xylem fiber, a key cell type for wood development. SOBIR1/EVR acts through a mechanism that involves BREVIPEDICELLUS (BP) and ERECTA (ER), 2 proteins previously known to regulate xylem fiber development. We demonstrate that BP binds SOBIR1/EVR promoter and that SOBIR1/EVR expression is enhanced in bp mutants, suggesting a direct, negative regulation of BP over SOBIR1/EVR expression. We show that SOBIR1/EVR physically interacts with ER and that defects caused by the sobir1/evr mutation are aggravated by mutating ER, indicating that SOBIR1/EVR and ERECTA act together in the control of the precocious formation of xylem fiber development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Homeodomain Proteins/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Wood/growth & development , Gene Expression Regulation, Plant , Genome-Wide Association Study , Mutation , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Kinases/metabolism
20.
Development ; 145(23)2018 11 26.
Article in English | MEDLINE | ID: mdl-30389856

ABSTRACT

The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Differentiation , Gibberellins/pharmacology , Homeodomain Proteins/metabolism , Xylem/cytology , Xylem/metabolism , Arabidopsis/drug effects , Cell Differentiation/drug effects , Gain of Function Mutation/genetics , Gene Expression Regulation, Plant/drug effects , Phenotype , Plant Vascular Bundle/drug effects , Plant Vascular Bundle/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Xylem/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...