Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 34(10): 1592-1607, 2021 10.
Article in English | MEDLINE | ID: mdl-34449944

ABSTRACT

Assessing the relative importance of geographical and ecological drivers of evolution is paramount to understand the diversification of species and traits at the macroevolutionary scale. Here, we use an integrative approach, combining phylogenetics, biogeography, ecology and quantified phenotypes to investigate the drivers of both species and phenotypic diversification of the iconic Neotropical butterfly genus Morpho. We generated a time-calibrated phylogeny for all known species and inferred historical biogeography. We fitted models of time-dependent (accounting for rate heterogeneity across the phylogeny) and paleoenvironment-dependent diversification (accounting for global effect on the phylogeny). We used geometric morphometrics to assess variation of wing size and shape across the tree and investigated their dynamics of evolution. We found that the diversification of Morpho is best explained when considering variable diversification rates across the tree, possibly associated with lineages occupying different microhabitat conditions. First, a shift from understory to canopy was characterized by an increased speciation rate partially coupled with an increasing rate of wing shape evolution. Second, the occupation of dense bamboo thickets accompanying a major host-plant shift from dicotyledons towards monocotyledons was associated with a simultaneous diversification rate shift and an evolutionary 'jump' of wing size. Our study points to a diversification pattern driven by punctuational ecological changes instead of a global driver or biogeographic history.


Subject(s)
Butterflies , Animals , Biological Evolution , Butterflies/genetics , Genetic Speciation , Phenotype , Phylogeny , Wings, Animal
2.
J Evol Biol ; 34(2): 284-295, 2021 02.
Article in English | MEDLINE | ID: mdl-33119141

ABSTRACT

Species interactions such as mimicry can promote trait convergence but disentangling this effect from those of shared ecology, evolutionary history, and niche conservatism is often challenging. Here by focusing on wing colour pattern variation within and between three butterfly species living in sympatry in a large proportion of their range, we tested the effect of species interactions on trait diversification. These butterflies display a conspicuous iridescent blue coloration on the dorsal side of their wings and a cryptic brownish colour on the ventral side. Combined with an erratic and fast flight, these colour patterns increase the difficulty of capture by predators and contribute to the high escape abilities of these butterflies. We hypothesize that, beyond their direct contribution to predator escape, these wing patterns can be used as signals of escape abilities by predators, resulting in positive frequency-dependent selection favouring convergence in wing pattern in sympatry. To test this hypothesis, we quantified dorsal wing pattern variations of 723 butterflies from the three species sampled throughout their distribution, including sympatric and allopatric situations and compared the phenotypic distances between species, sex and localities. We detected a significant effect of localities on colour pattern, and higher inter-specific resemblance in sympatry as compared to allopatry, consistent with the hypothesis of local convergence of wing patterns. Our results provide support to the existence of escape mimicry in the wild and stress the importance of estimating trait variation within species to understand trait variation between species, and to a larger extent, trait diversification at the macro-evolutionary scale.


Subject(s)
Biological Evolution , Butterflies/genetics , Pigmentation/genetics , Sympatry , Animals , Central America , Female , Male , Phylogeography , South America
3.
Evolution ; 70(1): 181-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26688277

ABSTRACT

Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force.


Subject(s)
Biological Evolution , Butterflies/anatomy & histology , Butterflies/genetics , Selection, Genetic , Wings, Animal/anatomy & histology , Animals , Butterflies/classification , Phylogeny
4.
Mol Ecol Resour ; 9 Suppl s1: 1-26, 2009 May.
Article in English | MEDLINE | ID: mdl-21564960

ABSTRACT

Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0-2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding - the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species - was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to 'variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...