Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 24(3): 035501, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22179392

ABSTRACT

We studied the resonant diffraction signal from stepped surfaces of SrTiO(3) at the Ti 2p → 3d (L(2,3)) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suitable as a model system for resonant soft x-ray diffraction. A small step density on the surface is sufficient to produce a well defined diffraction peak. We determined the optical parameters of the sample across the resonance and found that the differences between the energy dependence of the x-ray absorption signal, the specular reflectivity and the step-related peak reflect the different quantities probed in these signals. When recorded at low incidence or detection angles, XAS and specular reflectivity spectra are strongly distorted by the changes of the angle of total reflection with energy. The resonant diffraction spectrum is less affected and can be used as a spectroscopic probe even in less favorable geometries.

2.
Nat Mater ; 10(12): 963-7, 2011 Oct 16.
Article in English | MEDLINE | ID: mdl-22001961

ABSTRACT

Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.

3.
J Colloid Interface Sci ; 355(2): 486-93, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21237462

ABSTRACT

Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 µm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm).


Subject(s)
Electroplating/methods , Nanotubes/chemistry , Nanowires/chemistry , Materials Testing , Metals/chemistry , Microelectrodes , Nanotechnology/methods , Silicon/chemistry , Surface Properties
4.
Phys Rev Lett ; 104(16): 166804, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20482074

ABSTRACT

The perovskite SrTiO3-LaAlO3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar oxide interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3 capping layer prevents atomic reconstruction at the LaAlO3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.

5.
Phys Rev Lett ; 104(3): 036401, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366664

ABSTRACT

We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n=1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d{1} state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t{2g} states leaving only the planar d{xy} orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t{2g} 2D Hubbard model.

6.
J Phys Condens Matter ; 20(26): 264007, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-21694341

ABSTRACT

Inspired by the work of Ohtomo and Hwang in 2004, we shed new light on thin films of layered cuprate high-T(c) superconductors (HTS). In principle all HTS materials consist of charged perovskite-like layers which in thin films can lead to polar discontinuities at the interfaces of different materials. The resulting charge redistribution has to occur but we expect it to be far more complex than in the LaAlO(3)/SrTiO(3) system since copper can be multivalent. This makes it hard to predict what will happen in terms of transport or even magnetic properties compared to the 'simple' insulator LaAlO(3). Nevertheless, we point out that the picture of systems of charged layers is important and necessary to fully understand heterostructures of these complex materials.

7.
Nat Mater ; 6(7): 493-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17546035

ABSTRACT

The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman-Kittel-Kasuya-Yosida interactions, the Kondo effect and carrier-induced ferromagnetism in diluted magnetic semiconductors. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.

8.
Phys Rev Lett ; 99(19): 196106, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-18233090

ABSTRACT

The initial heteroepitaxial growth of YBa{2}Cu{3}O{7-delta} films on SrTiO3(001) substrates during pulsed laser deposition shows a growth-mode transition and a change of growth unit. The growth starts with two blocks, each two-thirds the size of the complete unit cell. The first of these blocks grows in a step-flow fashion, whereas the second grows in the layer-by-layer mode. Subsequent deposition occurs layer-by-layer of complete unit cells. These results suggest that the surface diffusion in the heteroepitaxial case is strongly influenced by the competition with formation energies, which is important for the fabrication of heteroepitaxial devices on the unit cell scale.

9.
Phys Rev Lett ; 96(12): 127602, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16605960

ABSTRACT

Thin films of PbTiO3, a classical ferroelectric, have been grown under tensile strain on single-crystal substrates of DyScO3. The films, of only 5 nm thickness, grow fully coherent with the substrate, as evidenced by synchrotron x-ray diffraction. A mapping of the reciprocal space reveals intensity modulations (satellites) due to regularly spaced polar domains in which the polarization appears rotated away from the substrate normal, characterizing a low-symmetry phase not observed in the bulk material. This could have important practical implications since these phases are known to be responsible for ultrahigh piezoelectric responses in complex systems.

10.
Phys Rev Lett ; 94(16): 167001, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15907157

ABSTRACT

Phase-sensitive order parameter symmetry test experiments are presented on the electron-doped high-T(c) cuprate Nd(2-x)Ce(x)CuO(4-y). These experiments have been conducted using zigzag-shaped thin film Josephson structures, in which the Nd(2-x)Ce(x)CuO(4-y) is connected to the low-T(c) superconductor Nb via an Au barrier layer. For the optimally doped as well as for the overdoped Nd(2-x)Ce(x)CuO(4-y), a clear predominant d(x2-y2)-wave behavior is observed at T=4.2 K. Both compounds were also investigated at T=1.6 K, presenting no indications for a change to a predominant s-wave symmetry with decreasing temperature.

11.
Phys Rev Lett ; 95(25): 257001, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16390254

ABSTRACT

We report on an ab anisotropy of Jc parallel b/Jc parallel a approximately/= 1.8 IcRn parallelb/IcRn parallel a approximately/= 1.2 and in ramp-edge junctions between untwinned YBa2Cu3O7 and s-wave Nb. For these junctions, the angle theta with the YBa2Cu3O7 crystal b axis is varied as a single parameter. The RnA(theta) dependence presents twofold symmetry. The minima in IcRn at theta approximately/= 50 degrees suggest a real s-wave subdominant component and negligible d(xy)-wave or imaginary s-wave admixtures. The IcRn(theta) dependence is well fitted by 83% dx2-y2-, 15% isotropic s-, and 2% anisotropic s-wave order parameter symmetry, consistent with deltab/deltaa approximately/= 1.5.

12.
Phys Rev Lett ; 88(5): 057004, 2002 Feb 04.
Article in English | MEDLINE | ID: mdl-11863770

ABSTRACT

Well-defined zigzag-shaped ramp-type Josephson junctions between YBa2Cu3O7 and Nb have been studied. The magnetic field dependencies of the critical currents provide evidence for d-wave--induced alternations in the direction of the Josephson current between neighboring sides of the zigzag structure. The arrays present controllable model systems to study the influences of pi facets in high-angle high- T(c) grain boundaries. From the characteristics, we estimate a possible imaginary s-wave admixture to the order parameter of the YBa2Cu3O7 to be below 1%.

SELECTION OF CITATIONS
SEARCH DETAIL
...