Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141762

ABSTRACT

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Subject(s)
GTPase-Activating Proteins , Mitochondria , Protein Interaction Maps , Protozoan Proteins , Toxoplasma , Humans , Binding Sites , Calorimetry , Chromatography, Gel , Fibroblasts/metabolism , Fibroblasts/parasitology , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Hydrogen Deuterium Exchange-Mass Spectrometry , Mitochondria/metabolism , Mitochondria/parasitology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/chemistry , Toxoplasma/genetics , Toxoplasma/metabolism , Two-Hybrid System Techniques
2.
mBio ; 12(6): e0159121, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781732

ABSTRACT

Toxoplasma gondii is an intracellular protozoan pathogen of humans that can cross the placenta and result in adverse pregnancy outcomes and long-term birth defects. The mechanisms used by T. gondii to cross the placenta are unknown, but complex interactions with the host immune response are likely to play a role in dictating infection outcomes during pregnancy. Prior work showed that T. gondii infection dramatically and specifically increases the secretion of the immunomodulatory chemokine CCL22 in human placental cells during infection. Given the important role of this chemokine during pregnancy, we hypothesized that CCL22 induction was driven by a specific T. gondii-secreted effector. Using a combination of bioinformatics and molecular genetics, we have now identified T. gondii GRA28 as the gene product required for CCL22 induction. GRA28 is secreted into the host cell, where it localizes to the nucleus, and deletion of the GRA28 gene results in reduced CCL22 placental cells as well as a human monocyte cell line. The impact of GRA28 on CCL22 production is also conserved in mouse immune and placental cells both in vitro and in vivo. Moreover, parasites lacking GRA28 are impaired in their ability to disseminate throughout the animal, suggesting a link between CCL22 induction and the ability of the parasite to cause disease. Overall, these data demonstrate a clear function for GRA28 in altering the immunomodulatory landscape during infection of both placental and peripheral immune cells and show a clear impact of this immunomodulation on infection outcome. IMPORTANCE Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in HIV/AIDS patients and can also cross the placenta and infect the developing fetus. We have found that placental and immune cells infected with T. gondii secrete significant amounts of a chemokine (called CCL22) that is critical for immune tolerance during pregnancy. In order to better understand whether this is a response by the host or a process that is driven by the parasite, we have identified a T. gondii gene that is absolutely required to induce CCL22 production in human cells, indicating that CCL22 production is a process driven almost entirely by the parasite rather than the host. Consistent with its role in immune tolerance, we also found that T. gondii parasites lacking this gene are less able to proliferate and disseminate throughout the host. Taken together, these data illustrate a direct relationship between CCL22 levels in the infected host and a key parasite effector and provide an interesting example of how T. gondii can directly modulate host signaling pathways in order to facilitate its growth and dissemination.


Subject(s)
Chemokine CCL22/metabolism , Placenta/parasitology , Pregnancy Complications, Parasitic/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/metabolism , Animals , Chemokine CCL22/genetics , Female , Host-Parasite Interactions , Humans , Mice , Mice, Inbred BALB C , Placenta/metabolism , Pregnancy , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/parasitology , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasmosis/genetics , Toxoplasmosis/parasitology
3.
J Pers Med ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34357113

ABSTRACT

Understanding the clinical significance of variants associated with hereditary cancer risk requires access to a pooled data resource or network of resources-a "cancer gene variant commons"-incorporating representative, well-characterized genetic data, metadata, and, for some purposes, pathways to case-level data. Several initiatives have invested significant resources into collecting and sharing cancer gene variant data, but further progress hinges on identifying and addressing unresolved policy issues. This commentary provides insights from a modified policy Delphi process involving experts from a range of stakeholder groups involved in the data-sharing ecosystem. In particular, we describe policy issues and options generated by Delphi participants in five domains critical to the development of an effective cancer gene variant commons: incentives, financial sustainability, privacy and security, equity, and data quality. Our intention is to stimulate wider discussion and lay a foundation for further work evaluating policy options more in-depth and mapping them to those who have the power to bring about change. Addressing issues in these five domains will contribute to a cancer gene variant commons that supports better care for at-risk and affected patients, empowers patient communities, and advances research on hereditary cancers.

4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723040

ABSTRACT

Host mitochondrial association (HMA) is a well-known phenomenon during Toxoplasma gondii infection of the host cell. The T. gondii locus mitochondrial association factor 1 (MAF1) is required for HMA and MAF1 encodes distinct paralogs of secreted dense granule effector proteins, some of which mediate the HMA phenotype (MAF1b paralogs drive HMA; MAF1a paralogs do not). To identify host proteins required for MAF1b-mediated HMA, we performed unbiased, label-free quantitative proteomics on host cells infected with type II parasites expressing MAF1b, MAF1a, and an HMA-incompetent MAF1b mutant. Across these samples, we identified ∼1,360 MAF1-interacting proteins, but only 13 that were significantly and uniquely enriched in MAF1b pull-downs. The gene products include multiple mitochondria-associated proteins, including those that traffic to the mitochondrial outer membrane. Based on follow-up endoribonuclease-prepared short interfering RNA (esiRNA) experiments targeting these candidate MAF1b-targeted host factors, we determined that the mitochondrial receptor protein TOM70 and mitochondria-specific chaperone HSPA9 were essential mediators of HMA. Additionally, the enrichment of TOM70 at the parasitophorous vacuole membrane interface suggests parasite-driven sequestration of TOM70 by the parasite. These results show that the interface between the T. gondii vacuole and the host mitochondria is characterized by interactions between a single parasite effector and multiple target host proteins, some of which are critical for the HMA phenotype itself. The elucidation of the functional members of this complex will permit us to explain the link between HMA and changes in the biology of the host cell.


Subject(s)
Host-Parasite Interactions , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Carrier Proteins , Ectopic Gene Expression , Fluorescent Antibody Technique , Host-Parasite Interactions/genetics , Mass Spectrometry , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Protein Transport , RNA Interference , RNA, Small Interfering/genetics , Vacuoles/metabolism , Virulence
5.
Parasitology ; 147(13): 1433-1442, 2020 11.
Article in English | MEDLINE | ID: mdl-32729455

ABSTRACT

Toxoplasma gondii rhoptry protein TgROP18 is a polymorphic virulence effector that targets immunity-related GTPases (IRGs) in rodents. Given that IRGs are uniquely diversified in rodents and not in other T. gondii intermediate hosts, the role of TgROP18 in manipulating non-rodent cells is unclear. Here we show that in human cells TgROP18I interacts with the interferon-gamma-inducible protein N-myc and STAT interactor (NMI) and that this is a property that is unique to the type I TgROP18 allele. Specifically, when expressed ectopically in mammalian cells only TgROP18I co-immunoprecipitates with NMI in IFN-γ-treated cells, while TgROP18II does not. In parasites expressing TgROP18I or TgROP18II, NMI only co-immunoprecipitates with TgROP18I and this is associated with allele-specific immunolocalization of NMI on the parasitophorous vacuolar membrane (PVM). We also found that TgROP18I reduces NMI association with IFN-γ-activated sequences (GAS) in the IRF1 gene promoter. Finally, we determined that polymorphisms in the C-terminal kinase domain of TgROP18I are required for allele-specific effects on NMI. Together, these data further define new host pathway targeted by TgROP18I and provide the first function driven by allelic differences in the highly polymorphic ROP18 locus.


Subject(s)
Interferons/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Toxoplasma/physiology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , THP-1 Cells
6.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-32014892

ABSTRACT

Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Subject(s)
Coccidiosis/immunology , Immunologic Factors/metabolism , Interferon-gamma/metabolism , Neospora/immunology , Rodent Diseases/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Interferon-gamma/deficiency , Interleukin-12/deficiency , Interleukin-12/metabolism , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Neospora/growth & development , Survival Analysis , Time Factors , Toxoplasma/growth & development
7.
Curr Opin Microbiol ; 46: 86-92, 2018 12.
Article in English | MEDLINE | ID: mdl-30317151

ABSTRACT

Locus expansion and diversification is pervasive in apicomplexan genomes and is predominantly found in loci encoding secreted proteins that interact with factors outside of the parasite. Key for understanding the impact of each of these loci on the host requires identification and functional characterization of their protein products, but these repetitive loci often are refractory to genome assembly. In this review we focus on Toxoplasma gondii and its nearest relatives to highlight the known impact of duplicated and diversified loci on our understanding of the host-pathogen molecular arms race. We describe current tools used for the identification and characterization of these loci, and review the most recent examples of how gene-expansion driven diversification can lead to novel gene functions.


Subject(s)
Antigenic Variation , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasmosis/parasitology , Animals , Humans , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Toxoplasma/chemistry , Toxoplasma/immunology
8.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Article in English | MEDLINE | ID: mdl-29505111

ABSTRACT

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Subject(s)
Mitochondria/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Toxoplasma/physiology , Toxoplasmosis/parasitology , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/genetics , Adenosine Diphosphate Ribose/metabolism , Animals , Female , Fibroblasts/cytology , Fibroblasts/parasitology , Foreskin/cytology , Genetic Loci , Host-Parasite Interactions/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics , Toxoplasma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...