Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 54(11): 1741-1749, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27016363

ABSTRACT

Treatment planning during catheter interventions in the heart is often based on electromechanical tissue characteristics obtained by endocardial surface mapping (ESM). Since studies have shown respiratory-induced cardiac motion of over 5 mm in different directions, respiratory motion may cause ESMs artifacts due to faulty interpolation. Hence, we designed and tested a real-time respiration-correction algorithm for ESM. An experimental phantom was used to design the correction algorithm which was subsequently evaluated in five pigs. A piezo-respiratory belt transducer was used to measure the respiration. The respiratory signal was inserted to the NOGA®XP electromechanical mapping system via the ECG leads. The results of the correction were assessed by measuring the displacement of a reference point and the registration error of the ESM on a CMR scan before and after correction. In the phantom experiment, the reference point displacement was 6.5 mm before and 1.1 mm after correction and the registration errors were 2.8 ± 2.2 and 1.9 ± 1.3 mm, respectively. In the animals, the average reference point displacement (apex) was reduced from 2.6 ± 1.0 mm before to 1.2 ± 0.3 mm after correction (P < 0.05). The in vivo registration error of the ESM and the CMR scan did not significantly improve. Even though the apical movement appreciated in pigs is small, the correction algorithm shows a decrease in displacement after correction. Application of this algorithm omits the use of the time-consuming respiratory gating during ESM and may lead to less respiratory artifacts in clinical endocardial mapping procedures.


Subject(s)
Electrocardiography/methods , Heart/anatomy & histology , Heart/physiology , Motion , Respiration , Algorithms , Animals , Female , Image Processing, Computer-Assisted , Phantoms, Imaging , Sus scrofa , Transducers
2.
AJNR Am J Neuroradiol ; 37(7): 1310-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26892986

ABSTRACT

BACKGROUND AND PURPOSE: Both hemodynamics and aneurysm wall thickness are important parameters in aneurysm pathophysiology. Our aim was to develop a method for semi-quantitative wall thickness assessment on in vivo 7T MR images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. MATERIALS AND METHODS: Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients who underwent 7T MR imaging with a TSE-based vessel wall sequence (0.8-mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to the signal of nearby brain tissue and were used as measures of apparent wall thickness. Spatial wall thickness variation was determined as the interquartile range in apparent wall thickness (the middle 50% of the apparent wall thickness range). Wall shear stress was determined by using phase-contrast MR imaging (0.5-mm isotropic resolution). We performed visual and statistical comparisons (Pearson correlation) to study the relation between wall thickness and wall shear stress. RESULTS: 3D colored apparent wall thickness maps of the aneurysms showed spatial apparent wall thickness variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of 1 voxel [0.8 mm]). In all aneurysms, apparent wall thickness was inversely related to wall shear stress (mean correlation coefficient, -0.35; P < .05). CONCLUSIONS: A method was developed to measure the wall thickness semi-quantitatively, by using 7T MR imaging. An inverse correlation between wall shear stress and apparent wall thickness was determined. In future studies, this noninvasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and rupture.


Subject(s)
Imaging, Three-Dimensional/methods , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/physiopathology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Aged , Female , Hemodynamics/physiology , Humans , Intracranial Aneurysm/pathology , Male , Middle Aged , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...