Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 533(7603): 385-9, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193684

ABSTRACT

Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.


Subject(s)
Climate , Freezing , Geologic Sediments/analysis , Ice Cover , Models, Theoretical , Antarctic Regions , Global Warming/statistics & numerical data , Gravitation , Remote Sensing Technology , Seawater/analysis , Time Factors
2.
Philos Trans A Math Phys Eng Sci ; 374(2059)2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26667910

ABSTRACT

Antarctica's subglacial lakes have two end member geophysical expressions: as hydraulically flat, radar reflective regions highlighted in ice surface topography and radar sounding profiles ('definite lakes'), and as localized sites of elevation change identified from repeat elevation observations ('active lakes') that are often found in fast flowing ice streams or enhanced ice flow tributaries. While 'definite lakes' can be identified readily by high bed reflectivity in radar sounding, the identification and characterization of less distinct subglacial lakes and water systems with radar sounding are complicated by variable radio-wave attenuation in the overlying ice. When relying on repeat elevation observations, the relatively short times series and biased distribution of elevation observations, along with the episodic nature of 'active lake' outflow and replenishment, limit our understanding of how water flows under the ice sheet. Using recently developed methods for quantifying the radar scattering behaviour of the basal interface of the ice, we can avoid the problem of attenuation, and observe the plumbing of the subglacial landscape. In West Antarctica's Ross Sea Embayment, we confirm that extensive distributed water systems underlie these ice streams. Distributed water sheets are upstream in the onset regions of fast flow, while canal systems underly downstream regions of fast flow. In East Antarctica, we use specularity analysis to recover substantial hydraulic connectivity extending beyond previous knowledge, connecting the lakes already delineated by traditional radar sounding or surface elevation transients.

3.
Geophys Res Lett ; 43(2): 600-610, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-29326484

ABSTRACT

Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

4.
Astrobiology ; 13(8): 740-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23924246

ABSTRACT

The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.


Subject(s)
Exobiology , Geology , Jupiter , Space Flight , Oceans and Seas
5.
Nature ; 479(7374): 502-5, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22089135

ABSTRACT

Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.

SELECTION OF CITATIONS
SEARCH DETAIL
...