Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(10): e0205564, 2018.
Article in English | MEDLINE | ID: mdl-30312352

ABSTRACT

Hybrid vigour, or heterosis, has been of tremendous importance in agriculture for the improvement of both crops and livestock. Notwithstanding large efforts to study the phenomenon of heterosis in the last decades, the identification of common molecular mechanisms underlying hybrid vigour remain rare. Here, we conducted a systematic survey of the degree of heterosis in Arabidopsis thaliana hybrids. For this purpose, two overlapping Arabidopsis hybrid populations were generated by crossing a large collection of naturally occurring accessions to two common reference lines. In these Arabidopsis hybrid populations the range of heterosis for several developmental and yield related traits was examined, and the relationship between them was studied. The traits under study were projected leaf area at 17 days after sowing, flowering time, height of the main inflorescence, number of side branches from the main stem or from the rosette base, total seed yield, seed weight, seed size and the estimated number of seeds per plant. Predominantly positive heterosis was observed for leaf area and height of the main inflorescence, whereas mainly negative heterosis was observed for rosette branching. For the other traits both positive and negative heterosis was observed in roughly equal amounts. For flowering time and seed size only low levels of heterosis were detected. In general the observed heterosis levels were highly trait specific. Furthermore, no correlation was observed between heterosis levels and the genetic distance between the parental lines. Since all selected lines were a part of the Arabidopsis genome wide association (GWA) mapping panel, a genetic mapping approach was applied to identify possible regions harbouring genetic factors causal for heterosis, with separate calculations for additive and dominance effects. Our study showed that the genetic mechanisms underlying heterosis were highly trait specific in our hybrid populations and greatly depended on the genetic background, confirming the elusive character of heterosis.


Subject(s)
Arabidopsis/genetics , Hybrid Vigor , Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Chromosome Mapping , Flowers/anatomy & histology , Flowers/growth & development , Genome-Wide Association Study , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Seeds/anatomy & histology , Species Specificity
2.
Proc Natl Acad Sci U S A ; 107(9): 4264-9, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20145108

ABSTRACT

Timing of germination is presumably under strong natural selection as it determines the environmental conditions in which a plant germinates and initiates its postembryonic life cycle. To investigate how seed dormancy is controlled, quantitative trait loci (QTL) analyses has been performed in six Arabidopsis thaliana recombinant inbred line populations by analyzing them simultaneously using a mixed model QTL approach. The recombinant inbred line populations were derived from crosses between the reference accession Landsberg erecta (Ler) and accessions from different world regions. In total, 11 delay of germination (DOG) QTL have been identified, and nine of them have been confirmed by near isogenic lines (NILs). The absence of strong epistatic interactions between the different DOG loci suggests that they affect dormancy mainly by distinct genetic pathways. This was confirmed by analyzing the transcriptome of freshly harvested dry seeds of five different DOG NILs. All five DOG NILs showed discernible and different expression patterns compared with the expression of their genetic background Ler. The genes identified in the different DOG NILs represent largely different gene ontology profiles. It is proposed that natural variation for seed dormancy in Arabidopsis is mainly controlled by different additive genetic and molecular pathways rather than epistatic interactions, indicating the involvement of several independent pathways.


Subject(s)
Arabidopsis/embryology , Genetic Variation , Seeds , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Quantitative Trait Loci
3.
Genetics ; 175(2): 891-905, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17179089

ABSTRACT

In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Chromosome Mapping/methods , Recombination, Genetic/genetics , Chromosome Mapping/statistics & numerical data , Genome, Plant/genetics , Genotype , Population Dynamics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
4.
Plant Physiol ; 135(1): 432-43, 2004 May.
Article in English | MEDLINE | ID: mdl-15122038

ABSTRACT

Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H2O2) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed.


Subject(s)
Arabidopsis/genetics , Germination/genetics , Quantitative Trait Loci/genetics , Seeds/genetics , Abscisic Acid/pharmacology , Arabidopsis/growth & development , Arabidopsis/metabolism , Genotype , Germination/drug effects , Germination/physiology , Hot Temperature , Hydrogen Peroxide/pharmacology , Inbreeding , Mannitol/pharmacology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Sodium Chloride/pharmacology
5.
Genetics ; 164(2): 711-29, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12807791

ABSTRACT

Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.


Subject(s)
Alleles , Arabidopsis/genetics , Germination , Seeds/physiology , Abscisic Acid/antagonists & inhibitors , Cell Division , Chromosome Mapping , Genetic Markers , Genetic Variation , Genotype , Gibberellins/pharmacology , Models, Genetic , Quantitative Trait Loci , Species Specificity , Temperature , Time Factors
6.
Physiol Plant ; 115(4): 604-612, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12121467

ABSTRACT

Seed dormancy and germination are complex traits that are controlled by many genes. Four mutants in Arabidopsis thaliana exhibiting a reduced dormancy phenotype, designated rdo1, rdo2, rdo3, and rdo4, have been characterized, both genetically and physiologically. Two of these mutants, rdo1 and rdo2, have been described before, the other two represent novel loci. The mutants mapped on chromosome 1 (rdo3), chromosome 2 (rdo2 and rdo4), and chromosome 3 (rdo1). None of these loci has been related to dormancy before. All four mutants show pleiotropic effects in the adult plant stage, which are different for each mutant. None of the mutants is deficient in ABA. Compared to Ler (wild-type), ABA sensitivity is not altered either, thereby excluding the possibility that ABA is involved in causing the reduced dormancy phenotype. The GA requirement was studied by using the GA biosynthesis inhibitor paclobutrazol, and genetically by generating double mutants with the GA-deficient mutant ga1-3. The results obtained by these two methods were comparable for all but one mutant: rdo1. In a GA-deficient background, rdo1, rdo2 and rdo3, all show sensitivity to GA between that of ga1-3 and ga1-3 aba1. However, when using paclobutrazol rdo1 exhibited the same sensitivity as rdo4 and wild-type. Analysis of double mutants among the rdo mutants revealed a very complex and inconsistent pattern.

SELECTION OF CITATIONS
SEARCH DETAIL
...