Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
J Comp Neurol ; 531(17): 1772-1795, 2023 12.
Article in English | MEDLINE | ID: mdl-37782702

ABSTRACT

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.


Mice are a highly tractable model for studying the claustrum complex (CLCX). However, without a consensus on how to delineate the CLCX in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CLCX, to match the level of detail needed to study its functional properties. To improve and expand upon preexisting delineation schemes, we used the combinatorial expression of several markers to create a comprehensive guide to delineate the CLCX and its subregions, including an online reference atlas. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CLCX.


Subject(s)
Claustrum , Male , Female , Mice , Animals , Claustrum/metabolism , Calbindins/metabolism , Brain/metabolism , Parvalbumins/metabolism , Rodentia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing
3.
Cell Rep ; 36(1): 109324, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233196

ABSTRACT

Adult neurogenesis in the dentate gyrus plays a role in adaptive brain functions such as memory formation. Adding new neurons to a specific locus of a neural circuit with functional needs is an efficient way to achieve such an adaptive function. However, it is unknown whether neurogenesis is linked to local functional demands potentially specified by the activity of neuronal circuits. By examining the distribution of neurogenesis and different types of neuronal activity in the dentate gyrus of freely moving adult rats, we find that neurogenesis is positionally associated with active excitatory neurons, some of which show place-cell activity, but is positionally dissociated from a type of interneuron with high-burst tendency. Our finding suggests that the behaviorally relevant activity of excitatory-inhibitory neuronal circuits can define a microenvironment stimulating/inhibiting neurogenesis. Such local regulation of neurogenesis may contribute to strategic recruitment of new neurons to modify functionally relevant neural circuits.


Subject(s)
Aging/physiology , Cellular Microenvironment , Dentate Gyrus/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Neurogenesis , Action Potentials/physiology , Animals , Cell Proliferation , Doublecortin Protein/metabolism , Imaging, Three-Dimensional , Interneurons/physiology , Optogenetics , Place Cells/physiology , Rats, Long-Evans , Synapses/physiology
4.
Elife ; 102021 03 26.
Article in English | MEDLINE | ID: mdl-33769282

ABSTRACT

The entorhinal cortex, in particular neurons in layer V, allegedly mediate transfer of information from the hippocampus to the neocortex, underlying long-term memory. Recently, this circuit has been shown to comprise a hippocampal output recipient layer Vb and a cortical projecting layer Va. With the use of in vitro electrophysiology in transgenic mice specific for layer Vb, we assessed the presence of the thus necessary connection from layer Vb-to-Va in the functionally distinct medial (MEC) and lateral (LEC) subdivisions; MEC, particularly its dorsal part, processes allocentric spatial information, whereas the corresponding part of LEC processes information representing elements of episodes. Using identical experimental approaches, we show that connections from layer Vb-to-Va neurons are stronger in dorsal LEC compared with dorsal MEC, suggesting different operating principles in these two regions. Although further in vivo experiments are needed, our findings imply a potential difference in how LEC and MEC mediate episodic systems consolidation.


Subject(s)
Entorhinal Cortex/physiology , Memory Consolidation/physiology , Neurons/physiology , Animals , Female , Male , Mice , Mice, Transgenic
5.
J Neurosci Methods ; 357: 109142, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753126

ABSTRACT

Neural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true "circuit-breaking" experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.


Subject(s)
Neurons , Optogenetics , Genetic Vectors , Transgenes
6.
Front Neural Circuits ; 15: 806154, 2021.
Article in English | MEDLINE | ID: mdl-35153682

ABSTRACT

All brain functionality arises from the activity in neural circuits in different anatomical regions. These regions contain different circuits comprising unique cell types. An integral part to understanding neural circuits is a full census of the constituent parts, i.e., the neural cell types. This census can be based on different characteristics. Previously combinations of morphology and physiology, gene expression, and chromatin accessibility have been used in various cortical and subcortical regions. This has given an extensive yet incomplete overview of neural cell types. However, these techniques have not been applied to all brain regions. Here we apply single cell analysis of accessible chromatin on two similar but different cortical regions, the medial and the lateral entorhinal cortices. Even though these two regions are anatomically similar, their intrinsic and extrinsic connectivity are different. In 4,136 cells we identify 20 different clusters representing different cell types. As expected, excitatory cells show regionally specific clusters, whereas inhibitory neurons are shared between regions. We find that several deep layer excitatory neuronal cell types as defined by chromatin profile are also shared between the two different regions. Integration with a larger scRNA-seq dataset maintains this shared characteristic for cells in Layer Vb. Interestingly, this layer contains three clusters, two specific to either subregion and one shared between the two. These clusters can be putatively associated with particular functional and anatomical cell types found in this layer. This information is a step forwards into elucidating the cell types within the entorhinal circuit and by extension its functional underpinnings.


Subject(s)
Chromatin , Entorhinal Cortex , Entorhinal Cortex/physiology , Neurons/physiology , Transcriptome
7.
iScience ; 23(3): 100888, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32087575

ABSTRACT

Although a variety of remarkable molecular tools for studying neural circuits have recently been developed, the ability to deploy them in particular neuronal subtypes is limited by the fact that native promoters are almost never specific enough. We recently showed that one can generate transgenic mice with anatomical specificity surpassing that of native promoters by combining enhancers uniquely active in particular brain regions with a heterologous minimal promoter, an approach we call EDGE (Enhancer-Driven Gene Expression). Here we extend this strategy to the generation of viral (rAAV) vectors, showing that some EDGE rAAVs can recapitulate the specificity of the corresponding transgenic lines in wild-type animals, even of another species. This approach thus holds the promise of enabling circuit-specific manipulations in wild-type animals, not only enhancing our understanding of brain function, but perhaps one day even providing novel therapeutic avenues to approach disorders of the brain.

8.
Neurosci Res ; 152: 78-86, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958494

ABSTRACT

As in all circuits, fully understanding how neural circuits operate requires the ability to specifically manipulate individual circuit elements, i.e. particular neuronal cell types. While recent years saw the development of molecular genetic tools allowing one to control and monitor neuronal activity, progress is limited by the ability to express such transgenes specifically enough. This goal is complicated by the fact that we are only beginning to understand how many cell types exist in the mammalian brain. Obtaining neuronal cell type-specific expression requires co-opting the genetic machinery which specifies their striking diversity, typically done by making transgenic animals using promoters expressing in neurons. However, while the vast majority of genes express in the brain, they almost always express in multiple cell types, meaning native promoters are not specific enough. We have recently taken a new approach to increase the specificity of transgene expression based upon identifying the distal cis-regulatory genomic elements (i.e. enhancers) uniquely active in a brain region and combining them with a heterologous minimal promoter. Termed Enhancer-Driven Gene Expression (EDGE), it allows for the generation of transgenic animals targeting the cell types of any brain region with far greater specificity than can be obtained with native promoters. Moreover, their small size allows for the generation of cell-specific viral vectors, conceivably enabling circuit-specific manipulations to any species.


Subject(s)
Genetic Engineering/methods , Genetic Enhancement/methods , Nerve Net/physiology , Animals , Animals, Genetically Modified , Gene Expression , Genetic Vectors , Promoter Regions, Genetic , Transgenes
9.
J Neurosci ; 38(45): 9712-9727, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30249791

ABSTRACT

Fan cells in layer II of the lateral entorhinal cortex (LEC) form a main component of the projection to the dentate gyrus, CA3 and CA2 of the hippocampal formation. This projection has a counterpart originating from stellate cells in layer II of the medial entorhinal cortex (MEC). Available evidence suggests that the two pathways carry different information, exemplified by a difference in spatial tuning of cells in LEC and MEC. The grid cell, a prominent position-modulated cell type present in MEC, has been postulated to derive its characteristic hexagonal firing pattern from dominant disynaptic inhibitory connections between hippocampal-projecting stellate cells. Given that grid cells have not been described in LEC, we aim to describe the local synaptic connectivity of fan cells, to explore whether the network architecture is similar to that of the MEC stellate cell. Using a combination of in vitro multicell electrophysiological and optogenetic approaches in acute slices from rodents of either sex, we show that excitatory connectivity between fan cells is very sparse. Fan cells connect preferentially with two distinct types of inhibitory interneurons, suggesting disynaptic inhibitory coupling as the main form of communication among fan cells. These principles are similar to those reported for stellate cells in MEC, indicating an overall comparable local circuit architecture of the main hippocampal-projecting cell types in the lateral and medial entorhinal cortex.SIGNIFICANCE STATEMENT Our data provide the first description of the synaptic microcircuit of hippocampal-projecting layer II cells in the lateral entorhinal cortex. We show that these cells make infrequent monosynaptic connections with each other, and that they preferentially communicate through a disynaptic inhibitory network. This is similar to the microcircuit of hippocampal-projecting stellate cells in layer II of the medial entorhinal cortex, but dissimilar to the connectivity observed in layer 2 of neocortex. In medial entorhinal cortex, the observed network structure has been proposed to underlie the firing pattern of grid cells. This opens the possibility that layer II cells in lateral entorhinal cortex exhibit regular firing patterns in an unexplored domain.


Subject(s)
Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Inhibition/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Rats , Rats, Long-Evans , Reelin Protein
10.
Curr Biol ; 28(13): 2103-2114.e5, 2018 07 09.
Article in English | MEDLINE | ID: mdl-30008330

ABSTRACT

Understanding neural circuit function requires individually addressing their component parts: specific neuronal cell types. However, not only do the precise genetic mechanisms specifying neuronal cell types remain obscure, access to these neuronal cell types by transgenic techniques also remains elusive. Whereas most genes are expressed in the brain, the vast majority are expressed in many different kinds of neurons, suggesting that promoters alone are not sufficiently specific to distinguish cell types. However, there are orders of magnitude more distal genetic cis-regulatory elements controlling transcription (i.e., enhancers), so we screened for enhancer activity in microdissected samples of mouse cortical subregions. This identified thousands of novel putative enhancers, many unique to particular cortical subregions. Pronuclear injection of expression constructs containing such region-specific enhancers resulted in transgenic lines driving expression in distinct sets of cells specifically in the targeted cortical subregions, even though the parent gene's promoter was relatively non-specific. These data showcase the promise of utilizing the genetic mechanisms underlying the specification of diverse neuronal cell types for the development of genetic tools potentially capable of targeting any neuronal circuit of interest, an approach we call enhancer-driven gene expression (EDGE).


Subject(s)
Enhancer Elements, Genetic , Gene Expression , Neurons/physiology , Promoter Regions, Genetic , Animals , Animals, Genetically Modified , Female , Male , Mice , Mice, Inbred C57BL
11.
Eur J Neurosci ; 33(6): 1094-100, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21395853

ABSTRACT

Adult dentate gyrus produces new neurons continuously throughout life. Multiple lines of evidence have pointed to the possibility that young neurons during a certain maturational stage mediate an important role in memory processing. In this review, we highlight the existing evidence of a 'critical period' for new neurons in their involvement in memory formation, describe the unique properties of young neurons as potential mechanisms underlying the critical period, and discuss the implications of the critical period for the function of adult neurogenesis.


Subject(s)
Adult Stem Cells/physiology , Dentate Gyrus/cytology , Memory/physiology , Neurons/physiology , Adult Stem Cells/cytology , Animals , Behavior, Animal/physiology , Dentate Gyrus/physiology , Gene Expression , Neuronal Plasticity/physiology , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...