Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999794

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Subject(s)
Colon , Diet, Western , Enterohemorrhagic Escherichia coli , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Diet, Western/adverse effects , Colon/microbiology , Feces/microbiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Escherichia coli O157
2.
Bioengineered ; 15(1): 2325713, 2024 12.
Article in English | MEDLINE | ID: mdl-38471972

ABSTRACT

Different dog sizes are associated with variations in large intestinal physiology including gut microbiota, which plays a key role in animal health. This study aims to evaluate, using the CANIM-ARCOL (Canine Mucosal Artificial Colon), the relative importance of gut microbes versus physicochemical and nutritional parameters of the canine colonic environment in shaping microbiota structure and functions. CANIM-ARCOL was set up to reproduce nutrient availability, bile acid profiles, colonic pH, and transit time from small, medium, or large dogs according to in vivo data, while bioreactors were all inoculated with a fecal sample collected from medium size dogs (n = 2). Applying different dog size parameters resulted in a positive association between size and gas or SCFA production, as well as distinct microbiota profiles as revealed by 16S Metabarcoding. Comparisons with in vivo data from canine stools and previous in vitro results obtained when CANIM-ARCOL was inoculated with fecal samples from three dog sizes revealed that environmental colonic parameters were sufficient to drive microbiota functions. However, size-related fecal microbes were necessary to accurately reproduce in vitro the colonic ecosystem of small, medium, and large dogs. For the first time, this study provides mechanistic insights on which parameters from colonic ecosystem mainly drive canine microbiota in relation to dog size. The CANIM-ARCOL can be used as a relevant in vitro platform to unravel interactions between food or pharma compounds and canine colonic microbiota, under different dog size conditions. The potential of the model will be extended soon to diseased situations (e.g. chronic enteropathies or obesity).


Environmental colonic parameters (such as nutrient availability, transit time, or pH) were sufficient to drive microbiota at the functional level in the CANIM-ARCOL in vitro gut model.Size-related fecal microbes were necessary to accurately reproduce the colonic environment of small, medium, and large dogs.CANIM-ARCOL model can be used as a relevant in vitro tool to decipher the relative importance of microbiota versus environmental colonic parameters in food and pharma studies.


Subject(s)
Ecosystem , Gastrointestinal Microbiome , Dogs , Animals , Colon , Intestinal Mucosa , Feces
3.
Int J Antimicrob Agents ; 63(4): 107102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325721

ABSTRACT

As in humans, antibiotics are widely used in dogs to treat gastrointestinal infections, contributing to the global burden of antimicrobial resistance on both human and animal health. Close contact between pets and their owners can lead to horizontal transfer of gut microbes, including transmission of antibiotic resistance. Nevertheless, until now, the impact of antibiotics on the canine gut microbiota has been poorly described. The aim of this study was to adapt the canine mucosal artificial colon (CANIM-ARCOL) model, reproducing the main nutritional, physicochemical and microbial parameters found in the large intestine of the dog to simulate an antibiotic-induced perturbation. Following initial investigation of five antibiotic cocktails at in-field doses, a 5-day regimen of metronidazole/enrofloxacin (ME) was selected for further model development. Two CANIM-ARCOL bioreactors were inoculated with a faecal sample (n=2 donors) and run in parallel for 26 days under control or antibiotic conditions. ME reduced microbial diversity and induced major shifts in bacterial populations, leading to a state of dysbiosis characterized by an increase in the relative abundance of Streptococcaceae, Lactobacillaceae and Enterobacteriaceae, and a decrease in the relative abundance of Bacteroidaceae, Fusobacteriota and Clostridiaceae. Overall, mucus-associated microbiota were less impacted by antibiotics than luminal microbes. Microbial alterations were associated with drastic decreases in gas production and short-chain fatty acid concentrations. Finally, the model was well validated through in-vitro-in-vivo comparisons in a study in dogs. The CANIM-ARCOL model provides a relevant platform as an alternative to in-vivo assays for an in-depth understanding of antibiotic-microbiota interactions and further testing of restoration strategies at individual level.


Subject(s)
Anti-Bacterial Agents , Microbiota , Dogs , Animals , Humans , Anti-Bacterial Agents/adverse effects , Dysbiosis/chemically induced , Intestinal Mucosa/microbiology , Colon/microbiology , Metronidazole/pharmacology
4.
Drug Metab Dispos ; 52(4): 274-287, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38307852

ABSTRACT

Human microbiomes, particularly in the gut, could have a major impact on the efficacy and toxicity of drugs. However, gut microbial metabolism is often neglected in the drug discovery and development process. Medicen, a Paris-based human health innovation cluster, has gathered more than 30 international leading experts from pharma, academia, biotech, clinical research organizations, and regulatory science to develop proposals to facilitate the integration of microbiome science into drug discovery and development. Seven subteams were formed to cover the complementary expertise areas of 1) pharma experience and case studies, 2) in silico microbiome-drug interaction, 3) in vitro microbial stability screening, 4) gut fermentation models, 5) animal models, 6) microbiome integration in clinical and regulatory aspects, and 7) microbiome ecosystems and models. Each expert team produced a state-of-the-art report of their respective field highlighting existing microbiome-related tools at every stage of drug discovery and development. The most critical limitations are the growing, but still limited, drug-microbiome interaction data to produce predictive models and the lack of agreed-upon standards despite recent progress. In this paper we will report on and share proposals covering 1) how microbiome tools can support moving a compound from drug discovery to clinical proof-of-concept studies and alert early on potential undesired properties stemming from microbiome-induced drug metabolism and 2) how microbiome data can be generated and integrated in pharmacokinetic models that are predictive of the human situation. Examples of drugs metabolized by the microbiome will be discussed in detail to support recommendations from the working group. SIGNIFICANCE STATEMENT: Gut microbial metabolism is often neglected in the drug discovery and development process despite growing evidence of drugs' efficacy and safety impacted by their interaction with the microbiome. This paper will detail existing microbiome-related tools covering every stage of drug discovery and development, current progress, and limitations, as well as recommendations to integrate them into the drug discovery and development process.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Drug Discovery , Drug Interactions
5.
Front Cardiovasc Med ; 11: 1342388, 2024.
Article in English | MEDLINE | ID: mdl-38317864

ABSTRACT

Introduction: Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods: C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results: The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion: The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.

6.
Appl Microbiol Biotechnol ; 108(1): 166, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261090

ABSTRACT

Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.


Subject(s)
Actinobacteria , Ecosystem , Dogs , Animals , Colon , Ammonia , Anaerobiosis
7.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37193669

ABSTRACT

Growing evidence suggests the importance of the small intestinal bacteria in the diet-host-microbiota dialogue in various facets of health and disease. Yet, this body site is still poorly explored and its ecology and mechanisms of interaction with the host are just starting to be unraveled. In this review, we describe the current knowledge on the small intestinal ecology, its composition and diversity, and how the intestinal bacteria in homeostatic conditions participate in nutrient digestion and absorption. We illustrate the importance of a controlled bacterial density and of the preservation of absorptive surface for the host's nutritional status. In particular, we discuss these aspects of the small intestinal environment in the framework of two disease conditions, namely small intestinal bacterial overgrowth (SIBO) and short bowel syndrome (SBS). We also detail in vivo, ex vivo, and in vitro models developed to simulate the small intestinal environment, some applied for (diet-)host-bacteria interaction studies. Lastly, we highlight recent technological, medical, and scientific advances applicable to investigate this complex and yet understudied body environment to broaden our knowledge in support of further progress in the medical practice, and to proceed towards the integration of the (small)intestinal bacteria in personalized therapeutic approaches.


Subject(s)
Intestine, Small , Microbiota , Intestine, Small/microbiology , Diet
8.
Microbiol Spectr ; : e0434422, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971547

ABSTRACT

Recent advances in the human microbiome characterization have revealed significant oral microbial detection in stools of dysbiotic patients. However, little is known about the potential interactions of these invasive oral microorganisms with commensal intestinal microbiota and the host. In this proof-of-concept study, we proposed a new model of oral-to-gut invasion by the combined use of an in vitro model simulating both the physicochemical and microbial (lumen- and mucus-associated microbes) parameters of the human colon (M-ARCOL), a salivary enrichment protocol, and whole-metagenome shotgun sequencing. Oral invasion of the intestinal microbiota was simulated by injection of enriched saliva in the in vitro colon model inoculated with a fecal sample from the same healthy adult donor. The mucosal compartment of M-ARCOL was able to retain the highest species richness levels over time, while species richness levels decreased in the luminal compartment. This study also showed that oral microorganisms preferably colonized the mucosal microenvironment, suggesting potential oral-to-intestinal mucosal competitions. This new model of oral-to-gut invasion can provide useful mechanistic insights into the role of oral microbiome in various disease processes. IMPORTANCE Here, we propose a new model of oral-to-gut invasion by the combined use of an in vitro model simulating both the physicochemical and microbial (lumen- and mucus-associated microbes) parameters of the human colon (M-ARCOL), a salivary enrichment protocol, and whole-metagenome shotgun sequencing. Our study revealed the importance of integrating the mucus compartment, which retained higher microbial richness during fermentation, showed the preference of oral microbial invaders for the mucosal resources, and indicated potential oral-to-intestinal mucosal competitions. It also underlined promising opportunities to further understand mechanisms of oral invasion into the human gut microbiome, define microbe-microbe and mucus-microbe interactions in a compartmentalized fashion, and help to better characterize the potential of oral microbial invasion and their persistence in the gut.

9.
J Hazard Mater ; 443(Pt B): 130383, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36444070

ABSTRACT

Infants are characterized by an immaturity of the gut ecosystem and a high exposure to microplastics (MPs) through diet, dust and suckling. However, the bidirectional interactions between MPs and the immature infant intestinal microbiota remain unknown. Our study aims to investigate the impact of chronic exposure to polyethylene (PE) MPs on the gut microbiota and intestinal barrier of infants, using the new Toddler mucosal Artificial Colon coupled with a co-culture of epithelial and mucus-secreting cells. Gut microbiota composition was determined by 16S metabarcoding and microbial activities were evaluated by gas, short chain fatty acid and volatolomics analyses. Gut barrier integrity was assessed via evaluation of intestinal permeability, inflammation and mucus synthesis. Exposure to PE MPs induced gut microbial shifts increasing α-diversity and abundance of potentially harmful pathobionts, such as Dethiosulfovibrionaceae and Enterobacteriaceae. Those changes were associated to butyrate production decrease and major changes in volatile organic compounds profiles. In contrast, no significant impact of PE MPs on the gut barrier, as mediated by microbial metabolites, was reported. For the first time, this study indicates that ingestion of PE MPs can induce perturbations in the gut microbiome of infants. Next step would be to further investigate the potential vector effect of MPs.


Subject(s)
Gastrointestinal Microbiome , Polyethylene , Humans , Infant , Polyethylene/toxicity , Microplastics , Plastics , Ecosystem
10.
J Hazard Mater ; 442: 130010, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36182891

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment and humans are inevitably exposed to them. However, the effects of MPs in the human digestive environment are largely unknown. The aim of our study was to investigate the impact of repeated exposure to polyethylene (PE) MPs on the human gut microbiota and intestinal barrier using, under adult conditions, the Mucosal Artificial Colon (M-ARCOL) model, coupled with a co-culture of intestinal epithelial and mucus-secreting cells. The composition of the luminal and mucosal gut microbiota was determined by 16S metabarcoding and microbial activities were characterized by gas, short chain fatty acid, volatolomic and AhR activity analyses. Gut barrier integrity was assessed via intestinal permeability, inflammation and mucin synthesis. First, exposure to PE MPs induced donor-dependent effects. Second, an increase in abundances of potentially harmful pathobionts, Desulfovibrionaceae and Enterobacteriaceae, and a decrease in beneficial bacteria such as Christensenellaceae and Akkermansiaceae were observed. These bacterial shifts were associated with changes in volatile organic compounds profiles, notably characterized by increased indole 3-methyl- production. Finally, no significant impact of PE MPs mediated by changes in gut microbial metabolites was reported on the intestinal barrier. Given these adverse effects of repeated ingestion of PE MPs on the human gut microbiota, studying at-risk populations like infants would be a valuable advance.


Subject(s)
Microplastics , Volatile Organic Compounds , Humans , Microplastics/toxicity , Plastics/toxicity , Polyethylene/toxicity , Bacteria , Fatty Acids, Volatile , Intestinal Mucosa , Mucins , Indoles
11.
Appl Microbiol Biotechnol ; 106(21): 7315-7336, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202936

ABSTRACT

Early life is a critical period where gut ecosystem and functions are being established with significant impact on health. For regulatory, technical, and cost reasons, in vitro gut models can be used as a relevant alternative to in vivo assays. An exhaustive literature review was conducted to adapt the Mucosal Artificial Colon (M-ARCOL) to specific physicochemical (pH, transit time, and nutritional composition of ileal effluents) and microbial parameters from toddlers in the age range of 6 months-3 years, resulting in the Tm-ARCOL. In vitro fermentations were performed to validate this newly developed colonic model compared to in vivo toddler data. Results were also compared to those obtained with the classical adult configuration. Fecal samples from 5 toddlers and 4 adults were used to inoculate bioreactors, and continuous fermentations were performed for 8 days. Gut microbiota structure (lumen and mucus-associated microbiota) and functions (gas and short-chain fatty acids) were monitored. Clearly distinct microbial signatures were obtained between the two in vitro conditions, with lower α-diversity indices and higher abundances of infant-related microbial populations (e.g., Bifidobacteriaceae, Enterobacteriaceae) in toddler versus adult conditions. In accordance with in vivo data, methane was found only in adult bioreactors, while higher percentage of acetate but lower proportions of propionate and butyrate was measured in toddlers compared to adults. This new in vitro model will provide a powerful platform for gut microbiome mechanistic studies in a pediatric context, both in nutritional- (e.g., nutrients, probiotics, prebiotics) and health-related (e.g., drugs, enteric pathogens) studies. KEY POINTS: • Development of a novel in vitro colonic model recapitulating the toddler environment. • Specific toddler versus adult digestive conditions are preserved in vitro. • The new model provides a powerful platform for microbiome mechanistic studies.


Subject(s)
Microbiota , Propionates , Adult , Infant , Humans , Child, Preschool , Child , Colon , Fatty Acids, Volatile , Feces , Butyrates , Methane
12.
NPJ Biofilms Microbiomes ; 8(1): 86, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266277

ABSTRACT

The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Microbiota , Humans , Enterotoxigenic Escherichia coli/physiology , Interleukin-8/genetics , Virulence , Diarrhea , Caco-2 Cells , Escherichia coli Infections/microbiology , Travel , Bacteria , Mucus , Mucins
13.
Int J Biol Sci ; 18(13): 5086-5102, 2022.
Article in English | MEDLINE | ID: mdl-35982892

ABSTRACT

Health and well-being of dogs are of paramount importance to their owners. Digestion plays a key role in dog health, involving physicochemical, mechanical and microbial actors. However, decades of breeding selection led to various dog sizes associated with different digestive physiology and disease sensitivity. Developing new products requires the consideration of all the multi-faceted aspects of canine digestion, the evaluation of food digestibility, drug release and absorption in the gut. This review paper provides an exhaustive literature survey on canine digestive physiology, focusing on size effect on anatomy and digestive parameters, with graphical representation of data classified as "small", "medium" and "large" dogs. Despite the huge variability between protocols and animals, interesting size effects on gastrointestinal physiology were highlighted, mainly related to the colonic compartment. Colonic measurements, transit time permeability, fibre degradation, faecal short-chain fatty acid concentration and faecal water content increase while faecal bile acid concentration decreases with body size. A negative correlation between body weight and Proteobacteria relative abundance was observed suggesting an effect of dog body size on faecal microbiota. This paper gathers helpful in vivo data for academics and industrials and supports the development of new food and pharma products to move towards canine personalized nutrition and health.


Subject(s)
Fatty Acids, Volatile , Microbiota , Animals , Body Weight , Digestion , Dogs , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Feces/microbiology
14.
Nutrients ; 14(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35631287

ABSTRACT

Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler's diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Lens Plant , Caco-2 Cells , Diarrhea , Dietary Fiber/pharmacology , Escherichia coli Infections/prevention & control , Humans , Plant Extracts , Saccharomyces cerevisiae , Travel , Virulence
15.
ALTEX ; 39(2): 235­257, 2022.
Article in English | MEDLINE | ID: mdl-35032964

ABSTRACT

Dogs occupy a full place in the family, and their well-being is of paramount importance to their owners. Digestion, a complex process involving physicochemical, mechanical, and microbial parameters, plays a central role in maintaining canine health. As in vivo studies in dogs are increasingly restricted by ethical, regulatory, societal, and cost pressures, an alternative option is the use of in vitro models simulating the different compartments of the canine gastrointestinal tract. This review introduces digestion and gut microbiota as key factors in dog nutrition and health under both healthy and diseased conditions (obesity and inflammatory bowel disease) and highlights similarities and differences between the human and canine digestive tract and processes. We provide the first in-depth description of currently available models of the canine digestive tract, discuss technical and scientific challenges that need to be addressed, and introduce potential applications of in vitro gut models in the food and veterinary fields. Even if the development of some in vitro models is still limited by a lack of in vivo data in dogs that is necessary for relevant configuration and validation, translation of long-term expertise on human in vitro gut models to dogs opens avenues for model optimization and adaptation to specific canine digestive conditions associated with various dog ages, sizes, breeds and/or diets, in both physiological and diseased states.


Subject(s)
Gastrointestinal Microbiome , Animals , Dogs , Gastrointestinal Tract
16.
Biotechnol Adv ; 54: 107796, 2022.
Article in English | MEDLINE | ID: mdl-34252564

ABSTRACT

The human digestion is a multi-step and multi-compartment process essential for human health, at the heart of many issues raised by academics, the medical world and industrials from the food, nutrition and pharma fields. In the first years of life, major dietary changes occur and are concomitant with an evolution of the whole child digestive tract anatomy and physiology, including colonization of gut microbiota. All these phenomena are influenced by child exposure to environmental compounds, such as drugs (especially antibiotics) and food pollutants, but also childhood infections. Due to obvious ethical, regulatory and technical limitations, in vivo approaches in animal and human are more and more restricted to favor complementary in vitro approaches. This review summarizes current knowledge on the evolution of child gut physiology from birth to 3 years old regarding physicochemical, mechanical and microbial parameters. Then, all the available in vitro models of the child digestive tract are described, ranging from the simplest static mono-compartmental systems to the most sophisticated dynamic and multi-compartmental models, and mimicking from the oral phase to the colon compartment. Lastly, we detail the main applications of child gut models in nutritional, pharmaceutical and microbiological studies and discuss the limitations and challenges facing this field of research.


Subject(s)
Environmental Pollutants , Gastrointestinal Microbiome , Animals , Child , Digestion , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiology , Humans
17.
Nutrients ; 13(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34579065

ABSTRACT

Dietary fibers have well-known beneficial effects on human health, but their anti-infectious properties against human enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is the main agent of travelers' diarrhea, against which targeted preventive strategies are currently lacking. ETEC pathogenesis relies on multiple virulence factors allowing interactions with the intestinal mucosal layer and toxins triggering the onset of diarrheal symptoms. Here, we used complementary in vitro assays to study the antagonistic properties of eight fiber-containing products from cereals, legumes or microbes against the prototypical human ETEC strain H10407. Inhibitory effects of these products on the pathogen were tested through growth, toxin production and mucus/cell adhesion inhibition assays. None of the tested compounds inhibited ETEC strain H10407 growth, while lentil extract was able to decrease heat labile toxin (LT) concentration in culture media. Lentil extract and specific yeast cell walls also interfered with ETEC strain H10407 adhesion to mucin beads and human intestinal cells. These results constitute a first step in the use of dietary fibers as a nutritional strategy to prevent ETEC infection. Further work will be dedicated to the study of fiber/ETEC interactions within a complex gut microbial background.


Subject(s)
Diarrhea/microbiology , Dietary Fiber/pharmacology , Enterotoxigenic Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Foodborne Diseases/microbiology , Virulence Factors , Cell Adhesion , Diarrhea/prevention & control , Dietary Fiber/therapeutic use , Enterotoxigenic Escherichia coli/growth & development , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxins/metabolism , Escherichia coli Infections/prevention & control , Escherichia coli Proteins/metabolism , Foodborne Diseases/prevention & control , Humans , Intestines/cytology , Intestines/microbiology , Lens Plant/chemistry , Microbial Sensitivity Tests , Mucins , Mucus , Seeds/chemistry , Travel , Yeasts/chemistry
18.
Antibiotics (Basel) ; 10(9)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34572682

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.

19.
mSystems ; 6(5): e0055821, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34519530

ABSTRACT

The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health.

20.
Front Microbiol ; 12: 703421, 2021.
Article in English | MEDLINE | ID: mdl-34349744

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post-weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to be the consequence of various stress factors such as transient anorexia, dietary change or increase in intestinal inflammation and permeability, but the exact mechanisms remain to be elucidated. As the use of animal experiments raise more and more ethical concerns, we used a recently developed in vitro model of piglet colonic microbiome and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning transition and pathogen challenge at weaning. Our data suggested that the tested factors impacted the composition and functionality of the MPigut-IVM microbiota. The simulation of weaning transition led to an increase in relative abundance of the Prevotellaceae family which was further promoted by the presence of the ETEC strain. In contrast, several beneficial families such as Bacteroidiaceae or Ruminococcaceae and gut health related short chain fatty acids like butyrate or acetate were reduced upon simulated weaning. Moreover, the incubation of MPigut-IVM filtrated effluents with porcine intestinal cell cultures showed that ETEC challenge in the in vitro model led to an increased expression of pro-inflammatory genes by the porcine cells. This study provides insights about the etiology of a dysbiotic microbiota in post-weaning piglets.

SELECTION OF CITATIONS
SEARCH DETAIL
...