Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(2): e0172358, 2017.
Article in English | MEDLINE | ID: mdl-28225826

ABSTRACT

Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination.


Subject(s)
DNA Contamination , Mycoplasma/isolation & purification , RNA, Ribosomal, 16S/genetics , Animals , Cell Culture Techniques , Cell Line , Cricetinae , DNA Primers/genetics , DNA, Bacterial/genetics , Haplorhini , Humans , Iguanas , Mice , Mycoplasma/genetics , Sensitivity and Specificity
2.
Genesis ; 51(3): 193-200, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23281269

ABSTRACT

Immune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. Considerable progress in deciphering the mechanisms controlling the activation or deletion of T cells has been made by using T cell receptor (TCR) transgenic mice. One such model is the F5 model in which CD8 T cells express a TCR specific for an epitope derived from the influenza NP68 protein. Our aim was to create transgenic mouse models expressing constitutively the NP68 epitope fused to enhanced green fluorescent protein (EGFP) in order to assess unambiguously the relative levels of NP68 epitope expressed by single cells. We used a lentiviral-based approach to generate two independent transgenic mouse strains expressing the fusion protein EGFP-NP68 under the control of CAG (CMV immediate early enhancer and the chicken ß-actin promoter) or spleen focus-forming virus (SFFV) promoters. Analysis of the pattern of EGFP expression in the hematopoietic compartment showed that CAG and SFFV promoters are differentially regulated during T cell development. However, both promoters drove high EGFP-NP68 expression in dendritic cells (pDCs, CD8α(+) cDCs, and CD8α(-) cDCs) from spleen or generated in vitro following differentiation from bone-marrow progenitors. NP68 epitope was properly processed and successfully presented by dendritic cells (DCs) by direct presentation and cross-presentation to F5 CD8 T cells. The models presented here are valuable tools to investigate the priming of F5 CD8 T cells by different subsets of DCs.


Subject(s)
Epitopes, T-Lymphocyte/genetics , Green Fluorescent Proteins/genetics , Transgenes , Viral Proteins/genetics , Animals , Dendritic Cells/metabolism , Genetic Engineering/methods , Genetic Vectors , Histocompatibility Antigens Class I/metabolism , Lentivirus/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , T-Lymphocytes/metabolism
3.
PLoS One ; 4(9): e7035, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19753117

ABSTRACT

BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA of overexpressed Sp1 induces an inhibition of cell cycle progression that precedes apoptosis and a transcriptional response targeting genes containing Sp1 binding sites in their promoter or not suggesting both direct Sp1-driven transcription and indirect mechanisms.


Subject(s)
Gene Expression Regulation , Sp1 Transcription Factor/metabolism , Animals , Apoptosis , Base Sequence , Cell Cycle , Cell Line, Transformed , Cell Proliferation , Cell Transformation, Neoplastic , Cytoplasm/metabolism , Mice , Models, Biological , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic
4.
Viral Immunol ; 19(2): 324-34, 2006.
Article in English | MEDLINE | ID: mdl-16817775

ABSTRACT

Morbillivirus infections have been known for a long time to be associated with an acute immunosuppression in their natural hosts. Here, we show that recombinant Morbillivirus nucleoproteins from canine distemper virus, peste-des-petits-ruminants virus, and Rinderpest virus bind B-lymphocytes from dogs, goats, and cattle, respectively, similarly to measles virus nucleoprotein in humans. The use of surface plasmon resonance imaging allowed the real time detection of differential interactions between Morbillivirus nucleoproteins and FcgammaRIIb (CD32). Moreover, those nucleoproteins which bind murine Fcgamma receptor inhibited the inflammatory immune responses in mice in a Fc receptor- dependent manner. In contrast, nucleoprotein from closely related Henipavirus genus, belonging to the Paramyxoviridae family as Morbillivirus, was devoid of capacity either to bind FcgammaRIIb or to inhibit inflammatory response. Altogether, these results suggest that nucleoprotein-FcR interaction is a common mechanism used by different Morbilliviruses to modulate the immune response.


Subject(s)
Immunosuppression Therapy , Morbillivirus Infections/immunology , Morbillivirus/pathogenicity , Nucleoproteins/metabolism , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cattle , Cell Line , Dogs , Humans , Mice , Mice, Inbred C57BL , Morbillivirus/classification , Morbillivirus/genetics , Morbillivirus/immunology , Morbillivirus Infections/virology , Nucleoproteins/genetics , Receptors, IgG/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Surface Plasmon Resonance
5.
J Clin Microbiol ; 44(2): 487-94, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16455903

ABSTRACT

Real-time PCR has been developed to genotype measles virus (MV) isolates. MV strains circulating in epidemics in Gabon in 1984, Cameroon in 2001, Morocco in 2003, and France in 2004 were investigated. We developed a real-time amplification refractory mutation system PCR (RT-AMRS PCR) using SYBR green fluorescent dye. Six pairs of primers for RT-ARMS PCR were designed to specifically amplify genotypes A, B2, B3.1, B3.2, C2, and D7. Genotypes could be differentiated by melting curve analysis. All strains were also confirmed by direct sequencing. Using the result obtained by direct sequencing and phylogenetic analysis as the reference, the accuracy of MV by RT-ARMS PCR and melting curve analysis was 97%. However, the latter method is more rapid and sensitive than the former method. This method could be a useful tool for molecular epidemiological studies of MV, providing an efficient alternative for large-scale studies.


Subject(s)
Disease Outbreaks , Measles virus/classification , Measles/epidemiology , Mutation , Polymerase Chain Reaction/methods , Benzothiazoles , Diamines , Fluorescent Dyes , Genotype , Humans , Measles/virology , Measles virus/genetics , Molecular Sequence Data , Organic Chemicals , Quinolines , Reproducibility of Results , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...