Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38936979

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term anti-allodynic efficacy of CB1-selective (ACEA), CB2-selective (AM1241), and CB1/CB2 mixed (CP55,940) agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to anti-allodynic effects, with females developing tolerance more rapidly than males, while the anti-allodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects. Significance Statement CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB¬2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB¬2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB¬2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.

2.
Exp Neurol ; 360: 114287, 2023 02.
Article in English | MEDLINE | ID: mdl-36455638

ABSTRACT

Chronic pain, one of the most common reasons adults seek medical care, has been linked to restrictions in mobility and daily activities, dependence on opioids, anxiety, depression, sleep deprivation, and reduced quality of life. Alzheimer's disease (AD), a devastating neurodegenerative disorder (characterized by a progressive impairment of cognitive functions) in the elderly, is often co-morbid with chronic pain. AD is one of the most common neurodegenerative disorders in the aged population. The reported prevalence of chronic pain is 45.8% of the 50 million people with AD. As the population ages, the number of older people who experience AD and chronic pain will also increase. The current treatment options for chronic pain are limited, often ineffective, and have associated side effects. This review summarizes the role of the endocannabinoid system in pain, its potential role in chronic pain in AD, and addresses gaps and future directions.


Subject(s)
Alzheimer Disease , Chronic Pain , Aged , Adult , Humans , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/drug therapy , Chronic Pain/epidemiology , Endocannabinoids/therapeutic use , Quality of Life , Analgesics, Opioid
3.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555111

ABSTRACT

Cannabis contains over 500 distinct compounds, which include cannabinoids, terpenoids, and flavonoids. However, very few of these compounds have been studied for their beneficial effects. There is an emerging concept that the constituents of the cannabis plant may work in concert to achieve better therapeutic benefits. This study is aimed at determining if the combination of a minor cannabinoid (cannabidiol, CBD) and a terpene (beta-caryophyllene, BCP) works in concert and if this has any therapeutic value. We used an inflammatory pain model (formalin) in mice to test for any functionality of CBD and BCP in combination. First, we determined the analgesic effect of CBD and BCP individually by establishing dose-response studies. Second, we tested the analgesic effect of fixed-ratio combinations and monitored any adverse effects. Finally, we determined the effect of this combination on inflammation. The combination of CBD and BCP produces a synergistic analgesic effect. This effect was without the cannabinoid receptor-1 side effects. The analgesic effect of CBD and BCP in combination involves an inflammatory mechanism. The combination of these two constituents of the cannabis plant, CBD and BCP, works in concert to produce a therapeutic effect with safety profiles through an inflammatory mechanism.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Drug-Related Side Effects and Adverse Reactions , Mice , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Polycyclic Sesquiterpenes/pharmacology , Terpenes , Drug-Related Side Effects and Adverse Reactions/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Dronabinol/therapeutic use
4.
Cannabis Cannabinoid Res ; 7(3): 274-278, 2022 06.
Article in English | MEDLINE | ID: mdl-35612493

ABSTRACT

The brain mechanism of inflammatory pain is an understudied area of research, particularly concerning the descending pain modulatory system. The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol-sensitive receptor that has also been involved in cannabinoid signaling. It is widely expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain modulatory system. In this study, we used behavioral, stereotaxic injections, pharmacological tools, and two inflammatory pain models (formalin and carrageenan) to determine if GPR55 in the PAG plays a role in the pain associated with inflammation in rats. It was found that the blockade of GPR55 action in PAG can drive the descending pain modulatory system to mitigate inflammatory pain. These data show that GPR55 plays a role in the descending pain modulatory system in inflammatory pain.


Subject(s)
Pain , Periaqueductal Gray , Animals , Pain/drug therapy , Pain Measurement , Periaqueductal Gray/metabolism , Rats , Receptors, Cannabinoid/metabolism , Receptors, G-Protein-Coupled/metabolism
5.
Front Pharmacol ; 13: 823132, 2022.
Article in English | MEDLINE | ID: mdl-35242036

ABSTRACT

Cannabinoid-based therapies are increasingly being used by cancer patients to treat chemotherapy-induced nausea and vomiting. Recently, cannabinoids have gained increased attention for their effects on cancer growth. Indeed, the effect of CB2 (JWH-015, JWH-133) agonists on breast cancer models have shown to reduce the size of breast cancer tumors. However, these studies assessing breast cancer progression were using CB2 agonist administered early into the cancer progression therefore assessing their effects on already established tumors is a critical need. In our study, we evaluate tumor growth using an ectopic xenograft ovarian (SKOV-3 and OVCAR-5) cancer model. The impact of chronic (30 days) administration of CB2 (JWH-133) agonist will be evaluated and started on 30 days of ectopic ovarian tumors. We will then evaluate and determine the mechanisms involved in ovarian cancer tumor growth by measuring levels of anandamide and 2-arachidonoyl glycerol as well as protein levels of CB1, CB2, ERα, ERß, GPER, TNFα, IL-1ß and IL-6 in ovarian and tumor tissues. Our results demonstrate a significant increase in ectopic ovarian tumor growth following chronic administration of JWH-133. Ovarian cancer tumor tissues chronically (30 days) treated with JWH-133 in comparison to vehicle treated groups showed an increase in endocannabinoid (AEA and 2-AG) and protein (CB2 and TNFα) levels with a decrease in GPER protein levels. Interestingly, our study emphasizes the importance of studying the impact of cannabinoid compounds on already established tumors to improve our understanding of cannabinoid-based therapies and, therefore better address clinical needs in cancer patients.

6.
Brain Res Bull ; 177: 39-52, 2021 12.
Article in English | MEDLINE | ID: mdl-34530070

ABSTRACT

Activation of c-Jun N-terminal kinases (JNKs) has been implicated in the development and persistence of inflammatory and neuropathic pain in animal models. Moreover, JNKs have been involved in the maintenance of chronic pain, as well as development of tolerance to antinociceptive agents in the opioid and cannabinoid class of compounds. In this study, we evaluated the antinociceptive effects of the JNK inhibitor SU 3327 (0.3-30 mg/kg) in the formalin pain model with an emphasis on the sex-specific actions of this compound. In wild-type C57BL6J mice, SU 3327 produced strong antinociceptive effects in the formalin pain model which were mediated by CB2 receptors in females, and both CB1 and CB2 receptors in males. SU 3327 at a dose of 10 mg/kg produced antinociception, hypothermia, motor impairment, and hypolocomotion to a similar extent in both males and females. The antinociceptive effects of SU 3327 were more potent in males at lower doses (1 and 3 mg/kg), while females were more sensitive to the hypothermic, and motor-suppression effects at lower (3 mg/kg) doses versus males. Analysis of spinal cords, using qPCR following SU 3327 administration in the formalin test, revealed changes in cannabinoid, tolerance and inflammatory markers in females only, and only in the high (10-30 mg/kg) dose conditions. Indeed, females showed an increase in mRNA levels of cannabinoid (CB2), but a decrease in tolerance (ß-arrestin 1) and inflammatory (TNF-α, IL-1ß, IL-6)-associated markers. The differences between males and females, in this study, support sex as an important factor in nociception and antinociceptive responses mediated by JNK and the endocannabinoid system.


Subject(s)
JNK Mitogen-Activated Protein Kinases , Neuralgia , Analgesics/pharmacology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2 , Thiadiazoles
7.
Mol Cell Endocrinol ; 533: 111320, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34033890

ABSTRACT

According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.


Subject(s)
Breast Neoplasms/complications , Cancer Pain/metabolism , Estrogens/metabolism , Ovarian Neoplasms/complications , Progesterone/metabolism , Analgesics/therapeutic use , Breast Neoplasms/metabolism , Cancer Pain/drug therapy , Cancer Pain/epidemiology , Female , Humans , Incidence , Molecular Targeted Therapy , Ovarian Neoplasms/metabolism
8.
Pharmacol Biochem Behav ; 202: 173107, 2021 03.
Article in English | MEDLINE | ID: mdl-33444598

ABSTRACT

Cannabis use has been increasing in recent years, particularly among women, and one of the most common uses of cannabis for medical purposes is pain relief. Pain conditions and response to analgesics have been demonstrated to be influenced by sex, and evidence is emerging that this is also true with cannabinoid-mediated analgesia. In this review we evaluate the preclinical evidence supporting sex differences in cannabinoid pharmacology, as well as emerging evidence from human studies, both clinical and observational. Numerous animal studies have reported sex differences in the antinociceptive response to natural and synthetic cannabinoids that may correlate to sex differences in expression, and function, of endocannabinoid system components. Female rodents have generally been found to be more sensitive to the effects of Δ9-THC. This finding is likely a function of both pharmacokinetic and pharmacodynamics factors including differences in metabolism, differences in cannabinoid receptor expression, and influence of ovarian hormones including estradiol and progesterone. Preclinical evidence supporting direct interactions between sex hormones and the endocannabinoid system may translate to sex differences in response to cannabis and cannabinoid use in men and women. Further research into the role of sex in endocannabinoid system function is critical as we gain a deeper understanding of the impact of the endocannabinoid system in various disease states, including chronic pain.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Cannabis/chemistry , Chronic Pain/drug therapy , Chronic Pain/metabolism , Dronabinol/therapeutic use , Endocannabinoids/metabolism , Gonadal Steroid Hormones/metabolism , Phytotherapy/methods , Plant Extracts/therapeutic use , Adult , Analgesia/methods , Animals , Female , Humans , Male , Sex Factors , Treatment Outcome
9.
Neuropharmacology ; 164: 107847, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31758947

ABSTRACT

Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CB1R), with CB1R desensitization occurring via phosphorylation of CB1Rs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ9-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics. In the current study, we found that pretreatment with the JNK inhibitor SP600125 (3 mg/kg) attenuates tolerance to the antinociceptive in the formalin test and to the anti-allodynic effects of Δ9-THC (6 mg/kg) in cisplatin-evoked neuropathic pain using wild-type mice. We also find that SP600125 causes an especially robust reduction in tolerance to the antinociceptive effects of Δ9-THC (30 mg/kg), but not WIN 55,212-2 (10 mg/kg) in the tail-flick assay using S426A/S430A mice. Interestingly, SP600125 pretreatment accelerated tolerance to the antinociceptive and anti-allodynic effects of (-)-CP55,940 (0.3 mg/kg) in mice with acute and neuropathic pain. These results demonstrate that inhibition of JNK signaling pathways delay tolerance to Δ9-THC, but not to CP55,940 or WIN55,212-2, demonstrating that the mechanisms of cannabinoid tolerance are agonist-specific.


Subject(s)
Analgesics/pharmacology , Cannabinoids/pharmacology , JNK Mitogen-Activated Protein Kinases/drug effects , Signal Transduction/drug effects , Animals , Anthracenes/pharmacology , Benzoxazines/pharmacology , Cisplatin , Dronabinol/pharmacology , Drug Tolerance , Hyperalgesia/drug therapy , Male , Mice , Morpholines/pharmacology , Naphthalenes/pharmacology , Neuralgia/chemically induced , Neuralgia/drug therapy , Pain Measurement
11.
Drugs ; 79(9): 969-995, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31127530

ABSTRACT

Increases in cancer diagnosis have tremendous negative impacts on patients and their families, and major societal and economic costs. The beneficial effect of chemotherapeutic agents on tumor suppression comes with major unwanted side effects such as weight and hair loss, nausea and vomiting, and neuropathic pain. Chemotherapy-induced peripheral neuropathy (CIPN), which can include both painful and non-painful symptoms, can persist 6 months or longer after the patient's last chemotherapeutic treatment. These peripheral sensory and motor deficits are poorly treated by our current analgesics with limited effectiveness. Therefore, the development of novel treatment strategies is an important preclinical research focus and an urgent need for patients. Approaches to prevent CIPN have yielded disappointing results since these compounds may interfere with the anti-tumor properties of chemotherapeutic agents. Nevertheless, the first (serotonin noradrenaline reuptake inhibitors [SNRIs], anticonvulsants, tricyclic antidepressants) and second (5% lidocaine patches, 8% capsaicin patches and weak opioids such as tramadol) lines of treatment for CIPN have shown some efficacy. The clinical challenge of CIPN management in cancer patients and the need to target novel therapies with long-term efficacy in alleviating CIPN are an ongoing focus of research. The endogenous cannabinoid system has shown great promise and efficacy in alleviating CIPN in preclinical and clinical studies. In this review, we will discuss the mechanisms through which the platinum, taxane, and vinca alkaloid classes of chemotherapeutics may produce CIPN and the potential therapeutic effect of drugs targeting the endocannabinoid system in preclinical and clinical studies, in addition to cannabinoid compounds diffuse mechanisms of action in alleviation of CIPN.


Subject(s)
Antineoplastic Agents/adverse effects , Cannabinoids/therapeutic use , Chronic Pain/drug therapy , Neoplasms/drug therapy , Neuralgia/drug therapy , Bridged-Ring Compounds/adverse effects , Cannabinoids/pharmacology , Chronic Pain/chemically induced , Clinical Trials as Topic , Humans , Neuralgia/chemically induced , Organoplatinum Compounds/adverse effects , Taxoids/adverse effects , Treatment Outcome , Vinca Alkaloids/adverse effects
12.
Int J Mol Sci ; 20(5)2019 Mar 09.
Article in English | MEDLINE | ID: mdl-30857270

ABSTRACT

Worldwide, women account for approximately 51% of human immunodeficiency virus-1 (HIV) seropositive individuals. The prevalence of neuropathic pain among individuals with HIV and a lack of preclinical data characterizing sex differences prompted us to address this knowledge gap. C57BL/6 male and female mice received multiple intrathecal injections of HIV-glycoprotein 120 (gp120), followed by determination of mechanical allodynia and thermal hypersensitivity for four weeks. The influence of ovarian hormones in the gp120 pain model was evaluated by comparison of ovariectomized (OVX) mice versus sham control. We found that gp120-induced neuropathic pain-like behaviors are sex-dependent. Female mice showed both increased mechanical allodynia and increased cold sensitivity relative to their male counterparts. The OVX mice showed reduced pain sensitivity compared to sham, suggesting a role of the ovarian hormones in sex differences in pain sensitivity to gp120. Gp120-induced neuropathic pain caused a shift in estrous cycle toward the estrus phase. However, there is a lack of clear correlation between the estrous cycle and the development of neuropathic pain-like behaviors during the four week recording period. This data provided the first evidence for sex differences in a rodent model of HIV-related neuropathic pain, along with a potential role of ovarian hormones.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Infections/complications , HIV-1/isolation & purification , Hyperalgesia/etiology , Neuralgia/etiology , Animals , Disease Models, Animal , Female , HIV Infections/virology , Humans , Hyperalgesia/metabolism , Hyperalgesia/virology , Male , Mice, Inbred C57BL , Neuralgia/metabolism , Neuralgia/virology , Sex Factors
13.
Alcohol Clin Exp Res ; 40(12): 2506-2515, 2016 12.
Article in English | MEDLINE | ID: mdl-27862022

ABSTRACT

BACKGROUND: Physicians have long reported that patients with chronic pain show higher tendencies for alcohol use disorder (AUD), and AUD patients appear to have higher pain sensitivities. The goal of this study was to test 2 hypotheses: (i) binge alcohol consumption increases inflammatory pain and mechanical and cold sensitivities; and (ii) tigecycline is an effective treatment for alcohol-mediated-increased pain behaviors and sensitivities. Both female and male mice were used to test the additional hypothesis that important sex differences in the ethanol (EtOH)-related traits would be seen. METHODS: "Drinking in the Dark" (DID) alcohol consuming and nondrinking control, female and male, adult C57BL/6J mice were evaluated for inflammatory pain behaviors and for the presence of mechanical and cold sensitivities. Inflammatory pain was produced by intraplantar injection of formalin (10 µl, 2.5% in saline). For cold sensation, a 20 µl acetone drop was used. Mechanical withdrawal threshold was measured by an electronic von Frey anesthesiometer. Efficacy of tigecycline (80 mg/kg i.p.) to reduce DID-related pain responses and sensitivity was tested. RESULTS: DID EtOH consumption increased inflammatory pain behavior, while it also produced sustained mechanical and cold sensitivities in both females and males. Tigecycline produced antinociceptive effects in males; a pro-nociceptive effect was seen in females in the formalin test. Likewise, the drug reduced both mechanical and cold sensitivities in males, but females showed an increase in sensitivity in both tests. CONCLUSIONS: Our results demonstrated that binge drinking increases pain, touch, and thermal sensations in both sexes. In addition, we have identified sex-specific effects of tigecycline on inflammatory pain, as well as mechanical and cold sensitivities. The development of tigecycline as an AUD pharmacotherapy may need consideration of its pro-nociceptive action in females. Further studies are needed to investigate the mechanism underlying the sex-specific differences in nociception.


Subject(s)
Binge Drinking/drug therapy , Hyperalgesia/drug therapy , Inflammation/drug therapy , Minocycline/analogs & derivatives , Pain/drug therapy , Sex Characteristics , Animals , Binge Drinking/complications , Female , Hyperalgesia/chemically induced , Hyperalgesia/complications , Inflammation/chemically induced , Inflammation/complications , Male , Mice , Minocycline/therapeutic use , Pain/chemically induced , Pain/complications , Tigecycline
SELECTION OF CITATIONS
SEARCH DETAIL
...