Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6655): 330-335, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37471537

ABSTRACT

Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.

2.
Sci Adv ; 9(6): eadf8119, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36753551

ABSTRACT

Terrestrial amplification (TA) of land warming relative to oceans is apparent in recent climatic observations. TA results from land-sea coupling of moisture and heat and is therefore important for predicting future warming and water availability. However, the theoretical basis for TA has never been tested outside the short instrumental period, and the spatial pattern and amplitude of TA remain uncertain. Here, we investigate TA during the Last Glacial Maximum (LGM; ~20 thousand years) in the low latitudes, where the theory is most applicable. We find remarkable consistency between paleotemperature proxies, theory, and climate model simulations of both LGM and future climates. Paleoclimate data thus provide crucial new support for TA, refining the range of future low-latitude, low-elevation TA to [Formula: see text] (95% confidence interval), i.e., land warming ~40% more than oceans. The observed data model theory agreement helps reconcile LGM marine and terrestrial paleotemperature proxies, with implications for equilibrium climate sensitivity.

3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723012

ABSTRACT

Understanding the history of the Greenland Ice Sheet (GrIS) is critical for determining its sensitivity to warming and contribution to sea level; however, that history is poorly known before the last interglacial. Most knowledge comes from interpretation of marine sediment, an indirect record of past ice-sheet extent and behavior. Subglacial sediment and rock, retrieved at the base of ice cores, provide terrestrial evidence for GrIS behavior during the Pleistocene. Here, we use multiple methods to determine GrIS history from subglacial sediment at the base of the Camp Century ice core collected in 1966. This material contains a stratigraphic record of glaciation and vegetation in northwestern Greenland spanning the Pleistocene. Enriched stable isotopes of pore-ice suggest precipitation at lower elevations implying ice-sheet absence. Plant macrofossils and biomarkers in the sediment indicate that paleo-ecosystems from previous interglacial periods are preserved beneath the GrIS. Cosmogenic 26Al/10Be and luminescence data bracket the burial of the lower-most sediment between <3.2 ± 0.4 Ma and >0.7 to 1.4 Ma. In the upper-most sediment, cosmogenic 26Al/10Be data require exposure within the last 1.0 ± 0.1 My. The unique subglacial sedimentary record from Camp Century documents at least two episodes of ice-free, vegetated conditions, each followed by glaciation. The lower sediment derives from an Early Pleistocene GrIS advance. 26Al/10Be ratios in the upper-most sediment match those in subglacial bedrock from central Greenland, suggesting similar ice-cover histories across the GrIS. We conclude that the GrIS persisted through much of the Pleistocene but melted and reformed at least once since 1.1 Ma.


Subject(s)
Geologic Sediments/analysis , Ice Cover/chemistry , Plant Dispersal , Aluminum/analysis , Beryllium/analysis , Fossils , Freezing , Geologic Sediments/chemistry , Greenland , Radioisotopes/analysis
4.
MethodsX ; 6: 1547-1556, 2019.
Article in English | MEDLINE | ID: mdl-31309041

ABSTRACT

Methods based on cosmic-ray produced nuclides are key to improve our understanding of the Earth surface dynamic. Measuring multiple cosmogenic nuclides in the same rock sample has a great potential, but data interpretation requires rigorous and often complex mathematical treatments. In order to make progress on this topic, this paper presents two easy-to-use MATLAB© programs permitting to derive information from pairs of cosmogenic nuclides (26Al-10Be or 10Be-21Ne) measured in rock samples that have been exposed to cosmic rays in the past: "Paleoaltitude.m" and "Burial.m". •"Paleoaltitude.m" computes paleoelevations from a sample whose burial age is known. This new paleoaltimetry method is presented in detail in Blard et al. [1]. The present article also develops the mathematical approach.•Since the elevation of exposure may affect the accuracy of a burial age [1], the second MATLAB© script "Burial.m" is designed to compute burial ages from 26Al-10Be or 10Be-21Ne pairs, taking into account the position of a sample (elevation and latitude) during its preburial exposure history.

5.
Sci Adv ; 4(8): eaar2514, 2018 08.
Article in English | MEDLINE | ID: mdl-30167458

ABSTRACT

Heinrich events are characterized by worldwide climate modifications. Over the Altiplano endorheic basin (high tropical Andes), the second half of Heinrich Stadial 1 (HS1a) was coeval with the highstand of the giant paleolake Tauca. However, the atmospheric mechanisms underlying this wet event are still unknown at the regional to global scale. We use cosmic-ray exposure ages of glacial landforms to reconstruct the spatial variability in the equilibrium line altitude of the HS1a Altiplano glaciers. By combining glacier and lake modeling, we reconstruct a precipitation map for the HS1a period. Our results show that paleoprecipitation mainly increased along the Eastern Cordillera, whereas the southwestern region of the basin remained relatively dry. This pattern indicates a southward expansion of the easterlies, which is interpreted as being a consequence of a southward shift of the Bolivian High. The results provide a new understanding of atmospheric teleconnections during HS1 and of rainfall redistribution in a changing climate.

6.
Nature ; 540(7632): 202-203, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27929019

Subject(s)
Climate , Ice , Greenland , Ice Cover , Science
7.
Nature ; 474(7350): 196-9, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21654802

ABSTRACT

The causes and timing of tropical glacier fluctuations during the Holocene epoch (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000 years (11 kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8 ± 0.9 to 8.5 ± 0.4 kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3 ± 0.8 °C cooler at 11 kyr ago and remained -2.1 ± 0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.

SELECTION OF CITATIONS
SEARCH DETAIL
...