Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 265(Pt A): 115060, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806421

ABSTRACT

The presence of microplastic in marine fishes has been well documented but few studies have directly examined differences between fishes occupying contrasting environmental compartments. In the present study, we investigated the gut contents of 390 fishes belonging to three pelagic (blue jack mackerel, chub mackerel, skipjack tuna) and two deep-sea species (blackbelly rosefish, blackspot seabream) from the Azores archipelago, North-East Atlantic for microplastic contamination. Our results revealed that pelagic species had significantly more microplastic than the deep-water species. In all of the species studied, fragments were the most common plastic shape recovered and we found a significant difference in the type of polymer between the pelagic and deep-water species. In deep-sea fish we found almost exclusively polypropylene, whereas in the pelagic fish, polyethylene was the most abundant polymer type. Overall, the proportion of fish containing plastic items varied across our study species from 3.7% to 16.7% of individuals sampled, and the average abundance of plastic items ranged from 0.04 to 0.22 per individual (the maximum was 4 items recovered in one stomach). Despite the proximity of the Azores archipelago to the North Atlantic subtropical gyre, a region of elevated plastic abundance, the proportion of individuals containing plastic (9.49%) were comparable with data reported elsewhere.


Subject(s)
Microplastics , Plastics , Animals , Azores , Environmental Monitoring , Fishes , Oceans and Seas , Stomach
2.
Parasit Vectors ; 12(1): 208, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31060624

ABSTRACT

BACKGROUND: Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expansion of the infection in the fish host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life-cycle stages are available throughout the year. RESULTS: We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63-day period. Our study shows activation of innate immune responses followed by B cell-mediated immune responses. We observed rapid parasite efflux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinflammatory response for about 1-2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post-infection (dpi) and was associated with a massive lymphocyte response. Our data further revealed a switch to a massive anti-inflammatory response (up to 1456-fold expression of il-10), a strong increase in the expression of IgM transcripts and increased number of IgM+ B lymphocytes, which produce specific antibodies for the elimination of most of the parasites from the fish at 35 dpi. However, despite the presence of these antibodies, S. molnari invades the liver 42 dpi, where an increase in parasite cell number and indistinguishable outer cell membranes are indicative of effective exploitation and disguise mechanisms. From 49 dpi onwards, the acute infection changes to a chronic one, with low parasite numbers remaining in the fish. CONCLUSIONS: To our knowledge, this is the first time myxozoan early development and immune modulation mechanisms have been analyzed along with innate and adaptive immune responses of its fish host, in a controlled laboratory system. Our study adds important information on host-parasite interaction and co-evolutionary adaptation of early metazoans (Cnidaria) with basic vertebrate (fish) immune systems and the evolution of host adaptation and parasite immune evasion strategies.


Subject(s)
Carps/immunology , Carps/parasitology , Fish Diseases/immunology , Fish Diseases/parasitology , Myxozoa/immunology , Parasitic Diseases, Animal/immunology , Animals , Cytokines/metabolism , Disease Models, Animal , Head Kidney/metabolism , Host-Parasite Interactions , Immunity, Cellular , Immunity, Humoral , Myxozoa/growth & development , Parasitic Diseases, Animal/parasitology , Spores
SELECTION OF CITATIONS
SEARCH DETAIL
...