Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(8): 1361-1380, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36779846

ABSTRACT

Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE: The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.


Subject(s)
Androstenes , Drug Resistance, Neoplasm , Gene Regulatory Networks , Machine Learning , Prostatic Neoplasms , Bayes Theorem , Transcription, Genetic , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Humans , Male , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Proto-Oncogene Proteins c-myb/genetics , Androstenes/therapeutic use , Gene Expression Profiling , Computer Simulation
2.
Sci Transl Med ; 13(620): eabj7790, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34648357

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by respiratory distress, multiorgan dysfunction, and, in some cases, death. The pathological mechanisms underlying COVID-19 respiratory distress and the interplay with aggravating risk factors have not been fully defined. Lung autopsy samples from 18 patients with fatal COVID-19, with symptom onset-to-death times ranging from 3 to 47 days, and antemortem plasma samples from 6 of these cases were evaluated using deep sequencing of SARS-CoV-2 RNA, multiplex plasma protein measurements, and pulmonary gene expression and imaging analyses. Prominent histopathological features in this case series included progressive diffuse alveolar damage with excessive thrombosis and late-onset pulmonary tissue and vascular remodeling. Acute damage at the alveolar-capillary barrier was characterized by the loss of surfactant protein expression with injury to alveolar epithelial cells, endothelial cells, respiratory epithelial basal cells, and defective tissue repair processes. Other key findings included impaired clot fibrinolysis with increased concentrations of plasma and lung plasminogen activator inhibitor-1 and modulation of cellular senescence markers, including p21 and sirtuin-1, in both lung epithelial and endothelial cells. Together, these findings further define the molecular pathological features underlying the pulmonary response to SARS-CoV-2 infection and provide important insights into signaling pathways that may be amenable to therapeutic intervention.


Subject(s)
COVID-19 , Cellular Senescence , Fibrinolysis , Humans , Lung , SARS-CoV-2
3.
Elife ; 92020 12 22.
Article in English | MEDLINE | ID: mdl-33350385

ABSTRACT

Understanding the regulatory architecture of phenotypic variation is a fundamental goal in biology, but connections between gene regulatory network (GRN) activity and individual differences in behavior are poorly understood. We characterized the molecular basis of behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we discovered these colonies contain a continuum of phenotypes, with some individuals specialized for either egg-laying or foraging and 'generalists' that perform both. Brain gene expression and chromatin accessibility profiles were correlated with behavioral variation, with generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-associated regulatory regions had more TF motifs. These results provide new insights into the important role played by brain GRN plasticity in the regulation of behavior, with implications for social evolution.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Brain/physiology , Gene Regulatory Networks , Neuronal Plasticity/physiology , Animals , Individuality , Phenotype , Social Behavior , Transcription Factors/metabolism
4.
Patterns (N Y) ; 1(6): 100093, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-33205133

ABSTRACT

Better tools are needed to enable researchers to quickly identify and explore effective and interpretable feature-based explanations for discriminating multi-class genomic datasets, e.g., healthy versus diseased samples. We develop an interactive exploration tool, GENVISAGE, which rapidly discovers the most discriminative feature pairs that separate two classes of genomic objects and then displays the corresponding visualizations. Since quickly finding top feature pairs is computationally challenging, especially for large numbers of objects and features, we propose a suite of optimizations to make GENVISAGE responsive at scale and demonstrate that our optimizations lead to a 400× speedup over competitive baselines for multiple biological datasets. We apply our rapid and interpretable tool to identify literature-supported pairs of genes whose transcriptomic responses significantly discriminate several chemotherapy drug treatments. With its generalizable optimizations and framework, GENVISAGE opens up real-time feature-based explanation generation to data from massive sequencing efforts, as well as many other scientific domains.

5.
PLoS Biol ; 18(1): e3000583, 2020 01.
Article in English | MEDLINE | ID: mdl-31971940

ABSTRACT

We present Knowledge Engine for Genomics (KnowEnG), a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis, and expression signature analysis. The system specializes in "knowledge-guided" data mining and machine learning algorithms, in which user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge bases and encoded in a massive "Knowledge Network." KnowEnG adheres to "FAIR" principles (findable, accessible, interoperable, and reuseable): its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution, and are interoperable with other computing platforms. The analysis tools are made available through multiple access modes, including a web portal with specialized visualization modules. We demonstrate the KnowEnG system's potential value in democratization of advanced tools for the modern genomics era through several case studies that use its tools to recreate and expand upon the published analysis of cancer data sets.


Subject(s)
Algorithms , Cloud Computing , Data Mining/methods , Genomics/methods , Software , Cluster Analysis , Computational Biology/methods , Data Analysis , Datasets as Topic , High-Throughput Nucleotide Sequencing/methods , Humans , Knowledge , Machine Learning , Metabolomics/methods
6.
Bioinformatics ; 36(2): 558-567, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31287491

ABSTRACT

MOTIVATION: Gene regulatory networks describe the regulatory relationships among genes, and developing methods for reverse engineering these networks is an ongoing challenge in computational biology. The majority of the initially proposed methods for gene regulatory network discovery create a network of genes and then mine it in order to uncover previously unknown regulatory processes. More recent approaches have focused on inferring modules of co-regulated genes, linking these modules with regulatory genes and then mining them to discover new molecular biology. RESULTS: In this work we analyze module-based network approaches to build gene regulatory networks, and compare their performance to single gene network approaches. In the process, we propose a novel approach to estimate gene regulatory networks drawing from the module-based methods. We show that generating modules of co-expressed genes which are predicted by a sparse set of regulators using a variational Bayes method, and then building a bipartite graph on the generated modules using sparse regression, yields more informative networks than previous single and module-based network approaches as measured by: (i) the rate of enriched gene sets, (ii) a network topology assessment, (iii) ChIP-Seq evidence and (iv) the KnowEnG Knowledge Network collection of previously characterized gene-gene interactions. AVAILABILITY AND IMPLEMENTATION: The code is written in R and can be downloaded from https://github.com/mikelhernaez/linker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Gene Regulatory Networks , Bayes Theorem , Computational Biology , Gene Expression Profiling
7.
G3 (Bethesda) ; 9(3): 625-634, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30642875

ABSTRACT

Alkali bees (Nomia melanderi) are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States. We sequenced, assembled, and annotated a high-quality draft genome of 299.6 Mbp for this species. Repetitive content makes up more than one-third of this genome, and previously uncharacterized transposable elements are the most abundant type of repetitive DNA. We predicted 10,847 protein coding genes, and identify 479 of these undergoing positive directional selection with the use of population genetic analysis based on low-coverage whole genome sequencing of 19 individuals. We found evidence of recent population bottlenecks, but no significant evidence of population structure. We also identify 45 genes enriched for protein translation and folding, transcriptional regulation, and triglyceride metabolism evolving slower in alkali bees compared to other halictid bees. These resources will be useful for future studies of bee comparative genomics and pollinator health research.


Subject(s)
Bees/genetics , Genome, Insect , Molecular Sequence Annotation , Whole Genome Sequencing , Animals , Female , Genetics, Population , Male , Phylogeny
8.
Genes Brain Behav ; 18(1): e12502, 2019 01.
Article in English | MEDLINE | ID: mdl-29968347

ABSTRACT

Social challenges like territorial intrusions evoke behavioral responses in widely diverging species. Recent work has showed that evolutionary "toolkits"-genes and modules with lineage-specific variations but deep conservation of function-participate in the behavioral response to social challenge. Here, we develop a multispecies computational-experimental approach to characterize such a toolkit at a systems level. Brain transcriptomic responses to social challenge was probed via RNA-seq profiling in three diverged species-honey bees, mice and three-spined stickleback fish-following a common methodology, allowing fair comparisons across species. Data were collected from multiple brain regions and multiple time points after social challenge exposure, achieving anatomical and temporal resolution substantially greater than previous work. We developed statistically rigorous analyses equipped to find homologous functional groups among these species at the levels of individual genes, functional and coexpressed gene modules, and transcription factor subnetworks. We identified six orthogroups involved in response to social challenge, including groups represented by mouse genes Npas4 and Nr4a1, as well as common modulation of systems such as transcriptional regulators, ion channels, G-protein-coupled receptors and synaptic proteins. We also identified conserved coexpression modules enriched for mitochondrial fatty acid metabolism and heat shock that constitute the shared neurogenomic response. Our analysis suggests a toolkit wherein nuclear receptors, interacting with chaperones, induce transcriptional changes in mitochondrial activity, neural cytoarchitecture and synaptic transmission after social challenge. It shows systems-level mechanisms that have been repeatedly co-opted during evolution of analogous behaviors, thus advancing the genetic toolkit concept beyond individual genes.


Subject(s)
Evolution, Molecular , Genetics, Behavioral/methods , Genomics/methods , Social Behavior , Systems Analysis , Animals , Bees , Brain/metabolism , Brain/physiology , Female , Gene Regulatory Networks , Genome , Male , Mice , Smegmamorpha , Transcriptome
9.
Bioinformatics ; 34(13): i547-i554, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29950002

ABSTRACT

Motivation: Several large-scale efforts have been made to collect gene expression signatures from a variety of biological conditions, such as response of cell lines to treatment with drugs, or tumor samples with different characteristics. These gene signature collections are utilized through bioinformatics tools for 'signature matching', whereby a researcher studying an expression profile can identify previously cataloged biological conditions most related to their profile. Signature matching tools typically retrieve from the collection the signature that has highest similarity to the user-provided profile. Alternatively, classification models may be applied where each biological condition in the signature collection is a class label; however, such models are trained on the collection of available signatures and may not generalize to the novel cellular context or cell line of the researcher's expression profile. Results: We present an advanced multi-way classification algorithm for signature matching, called SigMat, that is trained on a large signature collection from a well-studied cellular context, but can also classify signatures from other cell types by relying on an additional, small collection of signatures representing the target cell type. It uses these 'tuning data' to learn two additional parameters that help adapt its predictions for other cellular contexts. SigMat outperforms other similarity scores and classification methods in identifying the correct label of a query expression profile from as many as 244 or 500 candidate classes (drug treatments) cataloged by the LINCS L1000 project. SigMat retains its high accuracy in cross-cell line applications even when the amount of tuning data is severely limited. Availability and implementation: SigMat is available on GitHub at https://github.com/JinfengXiao/SigMat. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Pharmacogenetics/methods , Software , Transcriptome/drug effects , Algorithms , Cell Line , Gene Expression Profiling/methods , Humans
11.
Bioinformatics ; 32(14): 2167-75, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27153592

ABSTRACT

MOTIVATION: Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. RESULTS: We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. AVAILABILITY AND IMPLEMENTATION: DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. CONTACT: blatti@illinois.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Algorithms , Animals , Behavior, Animal , Drosophila/genetics , Embryonic Development/genetics , Social Behavior
12.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25977371

ABSTRACT

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Subject(s)
Bees/genetics , Evolution, Molecular , Genetic Drift , Social Behavior , Transcriptome , Amino-Acid N-Acetyltransferase , Animals , Bees/classification , DNA Transposable Elements , Gene Expression Regulation , Gene Regulatory Networks , Genome, Insect/genetics , Phylogeny , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics
13.
Nucleic Acids Res ; 43(8): 3998-4012, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25791631

ABSTRACT

Characterization of cell type specific regulatory networks and elements is a major challenge in genomics, and emerging strategies frequently employ high-throughput genome-wide assays of transcription factor (TF) to DNA binding, histone modifications or chromatin state. However, these experiments remain too difficult/expensive for many laboratories to apply comprehensively to their system of interest. Here, we explore the potential of elucidating regulatory systems in varied cell types using computational techniques that rely on only data of gene expression, low-resolution chromatin accessibility, and TF-DNA binding specificities ('motifs'). We show that static computational motif scans overlaid with chromatin accessibility data reasonably approximate experimentally measured TF-DNA binding. We demonstrate that predicted binding profiles and expression patterns of hundreds of TFs are sufficient to identify major regulators of ∼200 spatiotemporal expression domains in the Drosophila embryo. We are then able to learn reliable statistical models of enhancer activity for over 70 expression domains and apply those models to annotate domain specific enhancers genome-wide. Throughout this work, we apply our motif and accessibility based approach to comprehensively characterize the regulatory network of fruitfly embryonic development and show that the accuracy of our computational method compares favorably to approaches that rely on data from many experimental assays.


Subject(s)
Gene Regulatory Networks , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Animals , DNA/chemistry , DNA/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Enhancer Elements, Genetic , Nucleotide Motifs
14.
Science ; 346(6215): 1256780, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25504732

ABSTRACT

Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks.


Subject(s)
Brain/physiology , Finches/genetics , Finches/physiology , Gene Expression Regulation , Gene Regulatory Networks , Transcriptome , Vocalization, Animal , Acetylation , Animals , Avian Proteins/chemistry , Avian Proteins/genetics , Avian Proteins/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Genome , Histones/metabolism , Male , Regulatory Sequences, Nucleic Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Nucleic Acids Res ; 42(Web Server issue): W20-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24860165

ABSTRACT

The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/.


Subject(s)
DNA/chemistry , Regulatory Elements, Transcriptional , Software , Transcription Factors/metabolism , Animals , Binding Sites , Humans , Internet , Mice , Nucleotide Motifs , Sequence Analysis, DNA
16.
PLoS Genet ; 9(8): e1003571, 2013.
Article in English | MEDLINE | ID: mdl-23935523

ABSTRACT

ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF's occupancy profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding, called "STAP," to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation framework that compares a baseline model, based on the ChIP'ed ("primary") TF's motif, to more complex models where binding by secondary TFs is hypothesized to influence the primary TF's occupancy. Candidates interacting TFs were chosen based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by ≤150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding. Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we were able to categorize the effects into those that are likely to be mediated by the secondary TF's effect on local accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested physically interact and that some of these interactions mediate cooperative binding to DNA.


Subject(s)
DNA-Binding Proteins/genetics , DNA/genetics , Drosophila/genetics , Embryonic Development/genetics , Transcription Factors/genetics , Algorithms , Animals , Binding Sites , Chromatin Assembly and Disassembly/genetics , Computational Biology , Drosophila/growth & development , Gene Expression Regulation, Developmental , Genome
17.
Genome Res ; 23(6): 928-40, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23471540

ABSTRACT

Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes.


Subject(s)
Binding Sites , Drosophila Proteins/genetics , Drosophila/genetics , Nucleotide Motifs , Zinc Fingers/genetics , Alternative Splicing , Animals , Base Sequence , Cluster Analysis , Computational Biology/methods , Drosophila Proteins/chemistry , Drosophila Proteins/classification , Models, Molecular , Phylogeny , Position-Specific Scoring Matrices , Protein Binding , Protein Conformation
18.
Proc Biol Sci ; 279(1749): 4929-38, 2012 Dec 22.
Article in English | MEDLINE | ID: mdl-23097509

ABSTRACT

Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges.


Subject(s)
Brain/metabolism , Gene Expression Regulation , Smegmamorpha/physiology , Territoriality , Animals , Gene Expression Profiling , Gene Regulatory Networks , Male , Oligonucleotide Array Sequence Analysis , Smegmamorpha/genetics , Tissue Distribution , Transcription, Genetic
19.
Proc Natl Acad Sci U S A ; 109(26): E1801-10, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22691501

ABSTRACT

A fundamental problem in meta-analysis is how to systematically combine information from multiple statistical tests to rigorously evaluate a single overarching hypothesis. This problem occurs in systems biology when attempting to map genomic attributes to complex phenotypes such as behavior. Behavior and other complex phenotypes are influenced by intrinsic and environmental determinants that act on the transcriptome, but little is known about how these determinants interact at the molecular level. We developed an informatic technique that identifies statistically significant meta-associations between gene expression patterns and transcription factor combinations. Deploying this technique for brain transcriptome profiles from ca. 400 individual bees, we show that diverse determinants of behavior rely on shared combinations of transcription factors. These relationships were revealed only when we considered complex and variable regulatory rules, suggesting that these shared transcription factors are used in distinct ways by different determinants. This regulatory code would have been missed by traditional gene coexpression or cis-regulatory analytic methods. We expect that our meta-analysis tools will be useful for a broad array of problems in systems biology and other fields.


Subject(s)
Behavior, Animal , Meta-Analysis as Topic , Transcription, Genetic , Animals , Bees/physiology , Transcription Factors/metabolism , Transcriptome
20.
PLoS Genet ; 8(3): e1002596, 2012.
Article in English | MEDLINE | ID: mdl-22479195

ABSTRACT

Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.


Subject(s)
Bees/genetics , DNA-Binding Proteins , Drosophila Proteins , Fat Body , Juvenile Hormones/metabolism , Social Behavior , Transcription Factors , Animals , Bees/metabolism , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fat Body/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Juvenile Hormones/genetics , RNA Interference , Sequence Analysis, RNA , Sequence Homology, Amino Acid , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...