Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JPEN J Parenter Enteral Nutr ; 40(1): 67-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25921560

ABSTRACT

BACKGROUND: Nutrition support with parenteral nutrition (PN) is associated with gut atrophy. Prior studies have shown improvement with enteral chenodeoxycholic acid, a dual agonist for the farnesoid X receptor (FXR) and bile acid receptor TGR5. We hypothesized that gut growth is induced by TGR5 activation, and gut atrophy during PN administration could be prevented with the TGR5-specific agonist oleanolic acid (OA). METHODS: Neonatal pigs were implanted with duodenal and jugular vein catheters. Animals were provided equi-nutritious PN or enteral swine milk. A PN subgroup received enteral OA at 50 mg/kg/d. RESULTS: PN caused marked gut atrophy compared with enterally fed (EN) control animals. OA treatment led to preservation of gut mass demonstrated grossly and histologically. The mean ± SD gut weight as a percentage of body weight was 4.30 ± 0.26 for EN, 1.92 ± 0.06 for PN (P < .05, EN vs PN), and 3.39 ± 0.79 for PN+OA (P < .05, PN+OA vs PN). Mean ± SD gut density (g/cm) was 0.31 ± 0.03 for EN, 0.18 ± 0.03 for PN (P < .05 EN vs PN), and 0.27 ± 0.01 for PN+OA (P < .05 PN+OA vs PN). Histologically, a markedly decreased villous to crypt ratio was noted with PN, and OA significantly prevented this decrease. The mean ± SD v/c ratio was 3.51 ± 0.59 for EN, 1.69 ± 0.10 for PN (P < .05, EN vs PN), and 2.90 ± 0.23 for PN+OA (P < .05, PN+OA vs PN). Gut TGR5 messenger RNA expression was significantly elevated with OA treatment compared with both PN and EN. CONCLUSION: The bile acid-activated G protein-coupled receptor TGR5 agonist OA prevented gut atrophy associated with PN.


Subject(s)
Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Oleanolic Acid/pharmacology , Parenteral Nutrition/adverse effects , Animals , Animals, Newborn , Atrophy , Disease Models, Animal , Female , Organ Size/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Swine
2.
Nutr Res ; 35(2): 169-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25649660

ABSTRACT

Total parenteral nutrition (TPN) provides all nutrition intravenously. Although TPN therapy has grown enormously, it causes significant complications, including gut and hepatic dysfunction. Current models use animal tethering which is unlike ambulatory human TPN delivery and is cost prohibitive. We hypothesize that using ultramobile infusion pumps, TPN can be delivered cost-effectively, resulting in classical gut and hepatic injury, and we thus aim to establish a new model system. Neonatal pigs (n=8) were implanted with jugular vein and duodenal catheters. Animals were fitted in dual-pocket jackets. An ultramobile ambulatory pump was placed in one pocket and connected to the jugular vein or duodenal catheter. Isocaloric TPN or swine formula was placed in the other pocket. Rigorous Wifi-based video and scheduled monitoring was performed. After 14days, the animals were euthanized. The mean (±SD) daily weight gain (in grams) for enteral-fed control (EN) vs TPN animals was 102.4±10.8 and 91.03±12.1 respectively (P<.05). Total parenteral nutrition resulted in significant conjugated bilirubin elevation and hepatomegaly. Mean (±SD) serum conjugated bilirubin (in µmol/L) was 1.5±0.7 for EN and 6.3±2.8 for TPN (P<.05). Marked gut atrophy was noted with TPN. The mean (±SD) gut weight as a percent of body weight was 4.30±0.26 for EN and 2.62±0.48 for TPN (P<.05). Surgical sites healed well. All animals remained completely mobile. We thus established that TPN can be successfully delivered using ultramobile pumps and believe that this remains the first such description of an ambulatory piglet TPN model system. In addition to cholestasis and gut atrophy, classical TPN-induced injury was documented.


Subject(s)
Drug Administration Routes , Enteral Nutrition/methods , Hyperbilirubinemia/etiology , Intestinal Mucosa/pathology , Liver/drug effects , Parenteral Nutrition, Total/adverse effects , Animals , Animals, Newborn , Atrophy , Body Weight/drug effects , Enteral Nutrition/adverse effects , Hyperbilirubinemia/blood , Infusions, Intravenous/methods , Intestinal Mucosa/drug effects , Liver/metabolism , Parenteral Nutrition, Total/methods , Swine , Treatment Outcome , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...