Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neoplasma ; 71(2): 153-163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766856

ABSTRACT

Skin cancer is one of the most common malignancies in white populations. The therapy strategy is important in skin cancer treatment, depending on several criteria such as stage, size, and localization. Removal of cancerous tissue following anticancer therapeutic administration is considered as gold standard in skin cancer treatment. However, annually rising drug resistance, local inflammation, and ineffective treatment result in a reduction in the effectiveness of the patient's treatment. Nanotechnology has emerged as a prospective in the field of skin cancer medicine, offering innovative, promising solutions for therapeutic procedures and targeted drug delivery. Different nanomaterials are investigated for their potential in skin cancer treatment. Nanohydrogels as a hybrid material, have gained considerable attention due to their unique biomedical and pharmaceutical properties, such as biocompatibility, high water content, and tunable physicochemical characteristics. The principal problem with common skin melanoma chemotherapy is the strong side effects because therapeutics used for treatment do not distinguish cancer cells from healthy cells. Nanohydrogels, as a new-generation, versatile system with the possession of dual characteristics of hydrogels and nanoparticles have shown great potential in targeted delivery in cancer therapy thanks to the possibility of their various modifications, and by that overcome problems with side effects of treatment. This scientific review provides an analysis of the current state of research on nanohydrogels in skin cancer medicine, highlighting their design principles, synthesis methods, and applications in drug delivery, imaging, and combination therapies.


Subject(s)
Hydrogels , Skin Neoplasms , Humans , Skin Neoplasms/drug therapy , Hydrogels/chemistry , Drug Delivery Systems , Nanocomposites/therapeutic use , Nanocomposites/chemistry , Antineoplastic Agents/therapeutic use
2.
Neoplasma ; 71(2): 193-200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766852

ABSTRACT

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies with a high mortality rate. In the last few years, attention has been focused on substances of natural origin with anticancer activity. One such substance is thymol and its derivatives, which have been shown to have an antitumor effect also against CRC cells. In our study, we focused on determining the biological and antibacterial effects of thymol and thymol derivatives. Analyses were performed on a 3D model of human colon carcinoma cell lines (HCT-116 and HT-29) - spheroids. The cytotoxic (MTT assay) and genotoxic effect (comet assay) of thymol and derivatives: acetic acid thymol ester and thymol ß-D-glucoside were determined. ROS levels (ROS-Glo™ H2O2 Assay) and total antioxidant status (Randox TAS Assay) were also monitored. Last but not least, we also detected the effect of the derivatives using a disk diffusion assay and determined the number of colonies on the plates on selected bacteria such as Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus brevis, Lactobacillus pentosus and Weizmannia coagulans. The derivatives did not show a significant inhibitory effect on the growth of LAB bacteria (lactic acid bacteria) in contrast to thymol. Overall, thymol derivatives are cytotoxic, genotoxic and increase ROS levels. Among the derivatives tested, acetic acid thymol ester (IC50 ~ 0.2 µg/ml) was more effective. The second derivative tested (thymol ß-D-glucoside) was effective at higher concentrations than thymol. Our research confirmed that thymol derivatives have a toxic effect on the 3D model of intestinal tumor cells, while they do not have a toxic effect on selected intestinal bacteria. Thus, they could bring new significance to the prevention or treatment of CRC.


Subject(s)
Colorectal Neoplasms , Spheroids, Cellular , Thymol , Humans , Thymol/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Spheroids, Cellular/drug effects , HCT116 Cells , HT29 Cells , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antineoplastic Agents/pharmacology
3.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565973

ABSTRACT

Thymol affects various types of tumor cell lines, including colorectal cancer cells. However, the hydrophobic properties of thymol prevent its wider use. Therefore, new derivatives (acetic acid thymol ester, thymol ß-D-glucoside) have been synthesized with respect to hydrophilic properties. The cytotoxic effect of the new derivatives on the colorectal cancer cell lines HT-29 and HCT-116 was assessed via MTT assay. The genotoxic effect was determined by comet assay and micronucleus analysis. ROS production was evaluated using ROS-Glo™ H2O2 Assay. We confirmed that one of the thymol derivatives (acetic acid thymol ester) has the potential to have a cyto/genotoxic effect on colorectal cancer cells, even at much lower (IC50~0.08 µg/mL) concentrations than standard thymol (IC50~60 µg/mL) after 24 h of treatment. On the other side, the genotoxic effect of the second studied derivative-thymol ß-D-glucoside was observed at a concentration of about 1000 µg/mL. The antiproliferative effect of studied derivatives of thymol on the colorectal cancer cell lines was found to be both dose- and time-dependent at 100 h. Moreover, thymol derivative-treated cells did not show any significantly increased rate of micronuclei formation. New derivatives of thymol significantly increased ROS production too. The results confirmed that the effect of the derivative on tumor cells depends on its chemical structure, but further detailed research is needed. However, thymol and its derivatives have great potential in the prevention and treatment of colorectal cancer, which remains one of the most common cancers in the world.


Subject(s)
Colorectal Neoplasms , Thymol , Colorectal Neoplasms/drug therapy , Esters , Glucosides , Humans , Hydrogen Peroxide , Reactive Oxygen Species/metabolism , Thymol/chemistry , Thymol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...