Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 18028, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792265

ABSTRACT

Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale interface of the metal respiring thermoacidophile Metallosphaera sedula. M. sedula colonizes the stony meteorite Northwest Africa 1172 (NWA 1172; an H5 ordinary chondrite) and releases free soluble metals, with Ni ions as the most solubilized. We show the redox route of Ni ions, originating from the metallic Ni° of the meteorite grains and leading to released soluble Ni2+. Nanoscale resolution ultrastructural studies of meteorite grown M. sedula coupled to electron energy loss spectroscopy (EELS) points to the redox processing of Fe-bearing meteorite material. Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry. Our findings will serve in defining mineralogical and morphological criteria for the identification of metal-containing microfossils.


Subject(s)
Meteoroids , Nickel/metabolism , Sulfolobaceae/metabolism , Biotransformation , Cations, Divalent/analysis , Cations, Divalent/metabolism , Microscopy, Electron, Transmission , Nickel/analysis , Oxidation-Reduction , Spectrum Analysis , Sulfolobaceae/chemistry , Sulfolobaceae/ultrastructure
2.
Front Microbiol ; 10: 1267, 2019.
Article in English | MEDLINE | ID: mdl-31275255

ABSTRACT

Inorganic systems based upon polyoxometalate (POM) clusters provide an experimental approach to develop artificial life. These artificial symmetric anionic macromolecules with oxidometalate polyhedra as building blocks were shown to be well suited as inorganic frameworks for complex self-assembling and organizing systems with emergent properties. Analogously to mineral cells based on iron sulfides, POMs are considered as inorganic cells in facilitating prelife chemical processes and displaying "life-like" characteristics. However, the relevance of POMs to life-sustaining processes (e.g., microbial respiration) has not yet been addressed, while iron sulfides are very well known as ubiquitous mineral precursors and energy sources for chemolithotrophic metabolism. Metallosphaera sedula is an extreme metallophilic and thermoacidophilic archaeon, which flourishes in hot acid and respires by metal oxidation. In the present study we provide our observations on M. sedula cultivated on tungsten polyoxometalate (W-POM). The decomposition of W-POM macromolecular clusters and the appearance of low molecular weight W species (e.g., WO) in the presence of M. sedula have been detected by electrospray ionization mass spectrometry (ESI-MS) analysis. Here, we document the presence of metalloorganic assemblages at the interface between M. sedula and W-POM resolved down to the nanometer scale using scanning and transmission electron microscopy (SEM and TEM) coupled to electron energy loss spectroscopy (EELS). High-resolution TEM (HR-TEM) and selected-area electron diffraction (SAED) patterns indicated the deposition of redox heterogeneous tungsten species on the S-layer of M. sedula along with the accumulation of intracellular tungsten-bearing nanoparticles, i.e., clusters of tungsten atoms. These results reveal the effectiveness of the analytical spectroscopy coupled to the wet chemistry approach as a tool in the analysis of metal-microbial interactions and microbial cultivation on supramolecular self-assemblages based on inorganic metal clusters. We discuss the possible mechanism of W-POM decomposition by M. sedula in light of unique electrochemical properties of POMs. The findings presented herein highlight unique metallophilicity in hostile environments, extending our knowledge of the relevance of POMs to life-sustaining processes, understanding of the transition of POMs as inorganic prebiotic model to life-sustainable material precursors and revealing biogenic signatures obtained after the decomposition of an artificial inorganic compound, which previously was not associated with any living matter.

3.
Front Microbiol ; 10: 1492, 2019.
Article in English | MEDLINE | ID: mdl-31312192

ABSTRACT

The tungsten-microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing M. sedula grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of M. sedula grown on tungsten bearing scheelite. In particular, we describe that M. sedula mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology.

4.
Acta Crystallogr C Struct Chem ; 74(Pt 11): 1378-1383, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30398191

ABSTRACT

The single-side Al-centred tris-functionalized hybrid organic-inorganic Anderson polyoxomolybdates (C16H36N)3[Al(OH)3Mo6O18(OCH2)3CNH(C10H8O)]·C9H7N·4CH3OH·5H2O (AlMo6-NH-Cin; Cin is cinnamic acid, C10H9O2) and (C16H36N)3[Al(OH)3Mo6O18(OCH2)3CNH(C19H15ClNO3)]·9H2O (AlMo6-NH-Indo; Indo is indometacin, C19H16ClNO4) have been prepared in a mild three-step synthesis and structurally characterized by single-crystal X-ray diffraction, 1H NMR and IR spectroscopies and elemental analysis. Both AlMo6-NH-Cin and AlMo6-NH-Indo crystallize in the orthorhombic space group Pbca. The antibacterial activities of AlMo6-NH-Cin and AlMo6-NH-Indo against the Gram-negative human mucosal pathogen Moraxella catarrhalis were investigated by determination of the minimum inhibitory concentration, which is 32 µg ml-1 for AlMo6-NH-Cin and 256 µg ml-1 for AlMo6-NH-Indo.

5.
Front Microbiol ; 8: 1918, 2017.
Article in English | MEDLINE | ID: mdl-29062303

ABSTRACT

The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

6.
Sci Rep ; 7: 40966, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28112202

ABSTRACT

Ruthenium complexes are promising candidates for anticancer agents, especially NKP-1339 (sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)]), which is on the edge to clinical applications. The anticancer mechanism seems to be tightly linked to the redox chemistry but despite progress in human clinical trials the in vivo Ru oxidation state and the coordination of Ru remains unclear. The Ru-based anticancer drug NKP-1339 was studied applying XANES (Cl K- and Ru L2,3-edges) in tumor, kidney and liver tissue of a SW480 bearing mouse. Based on coordination charge and 3D XANES plots containing a series of model compounds as well as pre-edge analysis of the ligand Cl K-edge it is suggested that NKP-1339 remains in its +III oxidation state after 24 hours and at least one of the four chlorido ligands remain covalently bound to the Ru ion showing a biotransformation from RuIIIN2Cl4 to RuIIIClx(N/O)6-x (X = 1 or 2).


Subject(s)
Antineoplastic Agents/administration & dosage , Colonic Neoplasms/drug therapy , Coordination Complexes/administration & dosage , Kidney/chemistry , Liver/chemistry , Neoplasms/chemistry , Animals , Antineoplastic Agents/analysis , Coordination Complexes/analysis , Disease Models, Animal , Humans , Mice , X-Ray Absorption Spectroscopy
7.
Angew Chem Weinheim Bergstr Ger ; 128(22): 6527-6532, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27478277

ABSTRACT

Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of FeIII-HS in oceanic conditions into bioavailable aquatic FeII forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

8.
Angew Chem Int Ed Engl ; 55(22): 6417-22, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27100573

ABSTRACT

Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe(III) -HS in oceanic conditions into bioavailable aquatic Fe(II) forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.


Subject(s)
Humic Substances , Iron/metabolism , Oceans and Seas , Iron/chemistry , Oxidation-Reduction , Photochemical Processes
9.
Chemistry ; 21(49): 17800-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26527418

ABSTRACT

Four aromatic hybrid Anderson polyoxomolybdates with Fe(3+) or Mn(3+) as the central heteroatom have been synthesized by using a pre-functionalization protocol and characterized by using single-crystal X-ray diffraction, FTIR, ESI-MS, (1) H NMR spectroscopy, and elemental analysis. Structural analysis revealed the formation of (TBA)3 [FeMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ]⋅3.5 ACN (TBA-FeMo6 -bzn; TBA=tetrabutylammonium, ACN=acetonitrile, bzn=TRIS-benzoic acid alkanolamide, TRISR=(HOCH2 )3 CR)), (TBA)3 [FeMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ]⋅2.5 ACN (TBA-FeMo6 -cin; cin=TRIS-cinnamic acid alkanolamide), (TBA)3 [MnMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ]⋅3.5 ACN (TBA-MnMo6 -bzn), and (TBA)3 [MnMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ]⋅2.5 ACN (TBA-MnMo6 -cin). To make these four compounds applicable in biological systems, an ion exchange was performed that gave the water-soluble (up to 80 mM) sodium salts Na3 [FeMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ] (Na-FeMo6 -bzn), Na3 [FeMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ] (Na-FeMo6 -cin), Na3 [MnMo6 O18 {(OCH2 )3 CNHCOC6 H5 }2 ] (Na-MnMo6 -bzn), and Na3 [MnMo6 O18 {(OCH2 )3 CNHCOC8 H7 }2 ] (Na-MnMo6 -cin). The hydrolytic stability of the sodium salts was examined by applying ESI-MS in the pH range of 4 to 9. Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that human and bovine serum albumin (HSA and BSA) remain intact in solutions that contain up to 100 equivalents of the sodium salts over more than 4 d at 20 °C. Tryptophan (Trp) fluorescence quenching was applied to study the interactions between the sodium salts and HSA and BSA at pH 5.5 and 7.4. The quenching constants were extracted by using Stern-Volmer analysis, which suggested the formation of a 1:1 POM-protein complex in all samples. It is suggested that the aromatic hybrid POM approaches subdomain IIA of HSA and exhibits hydrophobic interactions with its hydrophobic tails, whereas the Anderson core is stabilized through electrostatic interactions with polar amino acid side chains from, for example, subdomain IB.


Subject(s)
Acetonitriles/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Quaternary Ammonium Compounds/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin/chemistry , Animals , Cattle , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Fluorescence , X-Ray Diffraction
10.
Chemistry ; 21(12): 4762-71, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25677371

ABSTRACT

Single- and double-sided functionalized hybrid organic-inorganic Anderson polyoxomolybdates with Ga(III) and Fe(III) positioned as central heteroatoms have been synthesized in a mild, two-step synthesis in an aqueous medium. Compounds 1-4 were isolated as hydrated salts, [TBA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×12 H2O (1) (TBA = tetrabutylammonium), Na3[FeMo6O18{(OCH2)3CCH2OH}2]×11 H2O (2), [TMA]2[GaMo6O18(OH)3{(OCH2)3CNH3}]×7 H2O (3) (TMA = tetramethylammonium), and Na[TMA]2[FeMo6O18(OH)3{(OCH2)3CNH3}](OH)×6 H2O (4). All the compounds were characterized based on single-crystal X-ray diffraction (SXRD), FTIR, UV/Vis, thermogravimetric, ESI-MS, NMR, and elemental analyses. Compound 1 was also crystallized with two smaller organic cations, giving [TMA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O (5) and [GDM]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O (6) (GDM = guanidinium) and were characterized based on UV/Vis, NMR, FTIR, and elemental analyses. The use of these compounds as additives in macromolecular crystallography was investigated by examining their hydrolytic stability by using ESI-MS in a pH range of 4 to 9. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that BSA remains intact in a solution containing up to 100 equivalents of 1 or 4 over more than four days at 20 °C. Zeta potential measurements demonstrate that 1-4 induce charge inversions on the positively charged surface of BSA (1 mg mL(-1)) with concentrations starting as low as 1.29 mM for compounds 1 and 2, which have the highest negative surface charge.


Subject(s)
Serum Albumin, Bovine/chemistry , Tungsten Compounds/chemistry , Animals , Cattle , Crystallography, X-Ray , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Conformation , Spectrometry, Mass, Electrospray Ionization , Thermogravimetry , Tungsten Compounds/chemical synthesis , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...