Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229758

ABSTRACT

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

2.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793422

ABSTRACT

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

3.
Viruses ; 13(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34452431

ABSTRACT

Islatravir (MK-8591) is a nucleoside reverse transcriptase translocation inhibitor in development for the treatment and prevention of HIV-1. The potential for islatravir to interact with commonly co-prescribed medications was studied in vitro. Elimination of islatravir is expected to be balanced between adenosine deaminase-mediated metabolism and renal excretion. Islatravir did not inhibit uridine diphosphate glucuronosyltransferase 1A1 or cytochrome p450 (CYP) enzymes CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4, nor did it induce CYP1A2, 2B6, or 3A4. Islatravir did not inhibit hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter (OCT) 1, bile salt export pump (BSEP), multidrug resistance-associated protein (MRP) 2, MRP3, or MRP4. Islatravir was neither a substrate nor a significant inhibitor of renal transporters organic anion transporter (OAT) 1, OAT3, OCT2, multidrug and toxin extrusion protein (MATE) 1, or MATE2K. Islatravir did not significantly inhibit P-glycoprotein and breast cancer resistance protein (BCRP); however, it was a substrate of BCRP, which is not expected to be of clinical significance. These findings suggest islatravir is unlikely to be the victim or perpetrator of drug-drug interactions with commonly co-prescribed medications, including statins, diuretics, anti-diabetic drugs, proton pump inhibitors, anticoagulants, benzodiazepines, and selective serotonin reuptake inhibitors.


Subject(s)
Deoxyadenosines/metabolism , Drug Interactions , Pharmaceutical Preparations/metabolism , Reverse Transcriptase Inhibitors/metabolism , Animals , Biological Transport , Cytochrome P-450 Enzyme System/metabolism , Deoxyadenosines/blood , Dogs , HIV Infections/drug therapy , Humans , In Vitro Techniques , Madin Darby Canine Kidney Cells , Membrane Transport Proteins/metabolism , Mice , Organic Anion Transporters/metabolism , Rabbits
4.
Article in English | MEDLINE | ID: mdl-30745395

ABSTRACT

Doravirine is a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus type 1 infection. In vitro studies were conducted to assess the potential for drug interactions with doravirine via major drug-metabolizing enzymes and transporters. Kinetic studies confirmed that cytochrome P450 3A (CYP3A) plays a major role in the metabolism of doravirine, with ∼20-fold-higher catalytic efficiency for CYP3A4 versus CYP3A5. Doravirine was not a substrate of breast cancer resistance protein (BCRP) and likely not a substrate of organic anion transporting polypeptide 1B1 (OATP1B1) or OATP1B3. Doravirine was not a reversible inhibitor of major CYP enzymes (CYP1A2, -2B6, -2C8, -2C9, -2C19, -2D6, and -3A4) or of UGT1A1, nor was it a time-dependent inhibitor of CYP3A4. No induction of CYP1A2 or -2B6 was observed in cultured human hepatocytes; small increases in CYP3A4 mRNA (≤20%) were reported at doravirine concentrations of ≥10 µM but with no corresponding increase in enzyme activity. In vitro transport studies indicated a low potential for interactions with substrates of BCRP, P-glycoprotein, OATP1B1 and OATP1B3, the bile salt extrusion pump (BSEP), organic anion transporter 1 (OAT1) and OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion 1 (MATE1) and MATE2K proteins. In summary, these in vitro findings indicate that CYP3A4 and CYP3A5 mediate the metabolism of doravirine, although with different catalytic efficiencies. Clinical trials reported elsewhere confirm that doravirine is subject to drug-drug interactions (DDIs) via CYP3A inhibitors and inducers, but they support the notion that DDIs (either direction) are unlikely via other major drug-metabolizing enzymes and transporters.


Subject(s)
Drug Interactions/physiology , Pyridones/metabolism , Triazoles/metabolism , Animals , Biological Transport/physiology , Cell Line , Cytochrome P-450 CYP3A/metabolism , Dogs , HEK293 Cells , Hepatocytes/metabolism , Humans , Kinetics , Madin Darby Canine Kidney Cells , Membrane Transport Proteins/metabolism
5.
Drug Metab Dispos ; 44(9): 1498-509, 2016 09.
Article in English | MEDLINE | ID: mdl-26825641

ABSTRACT

In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic.


Subject(s)
Creatinine/blood , Drug Design , Kidney/metabolism , Organic Anion Transporters, Sodium-Independent/antagonists & inhibitors , Organic Cation Transporter 2/antagonists & inhibitors , Biomarkers/metabolism , Humans , Kidney Function Tests , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Cation Transporter 2/metabolism
6.
Expert Opin Drug Metab Toxicol ; 9(3): 237-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23256482

ABSTRACT

INTRODUCTION: Drug transporters play an important role in the absorption, distribution, and excretion (ADE) of many drugs. In the last several years it has become increasingly clear that there are significant differences between rodents, dog, monkey, and human in the substrate specificity, tissue distribution, and relative abundance of transporters. These differences complicate cross-species extrapolations, which is important when attempting to predict human pharmacokinetics (PK) of drug candidates and assess risk for drug-drug interactions (DDIs). AREAS COVERED: This article provides an overview of species differences for the major transporters involved in drug disposition. Specifically, the article looks at a number of efflux and uptake transporters including multidrug resistance protein MDR1 P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), multidrug resistance proteins (MRPs), members of the multidrug resistance and toxic extrusion protein (MATE) family, as well as members of organic anion transporting polypeptides (OATPs), organic anion transporters (OATs), and organic cation transporters (OCTs). EXPERT OPINION: Quantitative knowledge of species differences of transporters, especially at the protein and functional level is still limited. The current challenge is to extrapolate and integrate data from both preclinical species and humans to quantitatively predict the impact of transporters on drug absorption, disposition, and drug-drug interactions. Increased understanding of species differences in transporter expression and functional activity is needed in order to translate findings from preclinical species to humans. Ultimately, high quality in vitro and in vivo data will aid in the establishment of physiologically based pharmacokinetic (PBPK) models, which will improve the capability to predict PK characteristics of drug candidates in humans.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Drug Evaluation, Preclinical , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , Absorption , Animals , Biological Transport , Disease Models, Animal , Drug Interactions , Humans , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Pharmacokinetics , Species Specificity , Tissue Distribution/drug effects
7.
Bioorg Med Chem Lett ; 22(8): 2811-7, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444683

ABSTRACT

A new structural class of potent prolylcarboxypeptidase (PrCP) inhibitors was discovered by high-throughput screening. The series possesses a tractable SAR profile with sub-nanomolar in vitro IC(50) values. Compared to prior inhibitors, the new series demonstrated minimal activity shifts in pure plasma and complete ex vivo plasma target engagement in mouse plasma at the 20 h post-dose time point (po). In addition, the in vivo level of CNS and non-CNS drug exposure was measured.


Subject(s)
Carboxypeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors , Animals , Butanols/chemical synthesis , Butanols/chemistry , Butanols/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
8.
Bioorg Med Chem Lett ; 22(8): 2818-22, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22444685

ABSTRACT

A series of potent inhibitors of prolylcarboxypeptidase (PrCP) was developed by modifying a lead structure that was discovered by high-throughput screening. The tert-butyl pyrrolidine was replaced by an aminocyclopentane to reduce the metabolic liabilities of the original lead. The compounds demonstrated sub-nanomolar in vitro IC(50) values, minimal activity shifts in pure plasma and improved pharmacokinetics. Complete ex vivo plasma target engagement was achieved with low brain exposure at the 20 h time point following p.o. dosing in a mouse. The results indicate that the aminocyclopentanes are useful tools for studying the therapeutic potential of peripheral (non-CNS) PrCP inhibition.


Subject(s)
Amines/pharmacology , Carboxypeptidases/antagonists & inhibitors , Cyclopentanes/pharmacology , Drug Discovery , Enzyme Inhibitors , Amines/chemical synthesis , Amines/chemistry , Animals , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Obesity/drug therapy
10.
Bioorg Med Chem Lett ; 22(1): 658-65, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22079761

ABSTRACT

Novel prolylcarboxypeptidase (PrCP) inhibitors with nanomolar IC(50) values were prepared by replacing the previously described dichlorobenzimidazole-substituted pyrrolidine amides with a variety of substituted benzylamine amides. In contrast to prior series, the compounds demonstrated minimal inhibition shift in whole serum and minimal recognition by P-glycoprotein (P-gp) efflux transporters. The compounds were also cell permeable and demonstrated in vivo brain exposure. The in vivo effect of compound (S)-6e on weight loss in an established diet-induced obesity (eDIO) mouse model was studied.


Subject(s)
Benzimidazoles/pharmacology , Brain/metabolism , Carboxypeptidases/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Amides/chemistry , Animals , Biological Transport , Body Weight , Brain/drug effects , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , Obesity/drug therapy , Pyrrolidines/chemistry , Time Factors
11.
Mol Inform ; 31(3-4): 231-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-27477094

ABSTRACT

A QSAR model for predicting passive permeability (Papp ) was derived from Papp values measured in the LLC-PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross-validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco-2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp , logD seems the most important parameter. Intermediate values of logD are associated with higher Papp .

12.
Bioorg Med Chem Lett ; 21(24): 7281-6, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22047692

ABSTRACT

An in vitro screening protocol was used to transform a systemically-distributed SCD inhibitor into a liver-targeted compound. Incorporation of a key nicotinic acid moiety enables molecular recognition by OATP transporters, as demonstrated by uptake studies in transfected cell lines, and likely serves as a critical component of the observed liver-targeted tissue distribution profile. Preclinical anti-diabetic oGTT efficacy is demonstrated with nicotinic acid-based, liver-targeting SCD inhibitor 10, and studies with a close-structural analog devoid of SCD1 activity, suggest this efficacy is a result of on-target activity.


Subject(s)
Enzyme Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Nicotinic Acids/chemistry , Stearoyl-CoA Desaturase/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Liver/drug effects , Liver/enzymology , Mice , Mice, Inbred C57BL , Nicotinic Acids/chemical synthesis , Nicotinic Acids/pharmacokinetics , Nicotinic Acids/pharmacology , Rats , Stearoyl-CoA Desaturase/metabolism , Structure-Activity Relationship , Tissue Distribution
13.
Bioorg Med Chem Lett ; 21(18): 5547-51, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21784634

ABSTRACT

An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Piperidines/pharmacology , Renin/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Administration, Oral , Animals , Biological Availability , Biological Transport/drug effects , Dose-Response Relationship, Drug , Mice , Mice, Knockout , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Rats , Renin/metabolism , Stereoisomerism , Structure-Activity Relationship
14.
J Med Chem ; 54(14): 5082-96, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21661758

ABSTRACT

The potential use of SCD inhibitors for the chronic treatment of diabetes and dyslipidemia has been limited by preclinical adverse events associated with inhibition of SCD in skin and eye tissues. To establish a therapeutic window, we embarked on designing liver-targeted SCD inhibitors by utilizing molecular recognition by liver-specific organic anion transporting polypeptides (OATPs). In doing so, we set out to target the SCD inhibitor to the organ believed to be responsible for the therapeutic efficacy (liver) while minimizing its exposure in the tissues associated with mechanism-based SCD depletion of essential lubricating lipids (skin and eye). These efforts led to the discovery of MK-8245 (7), a potent, liver-targeted SCD inhibitor with preclinical antidiabetic and antidyslipidemic efficacy with a significantly improved therapeutic window.


Subject(s)
Acetates/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Liver/enzymology , Stearoyl-CoA Desaturase/antagonists & inhibitors , Tetrazoles/chemical synthesis , Acetates/chemistry , Acetates/pharmacology , Animals , Cell Line , Diffusion , Dogs , Female , Harderian Gland/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , In Vitro Techniques , Liver-Specific Organic Anion Transporter 1 , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Microsomes/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Sprague-Dawley , Skin/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3 , Species Specificity , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacology , Tissue Distribution
15.
Mol Pharmacol ; 73(4): 1072-84, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18187582

ABSTRACT

Absorption of dietary cholesterol in the proximal region of the intestine is mediated by Niemann-Pick C1-like protein (NPC1L1) and is sensitive to the cholesterol absorption inhibitor ezetimibe (EZE). Although a correlation exists between EZE binding to NPC1L1 in vitro and efficacy in vivo, the precise nature of interaction(s) between NPC1L1, EZE, and cholesterol remain unclear. Here, we analyze the direct relationship between EZE analog binding to NPC1L1 and its influence on cholesterol influx in a novel in vitro system. Using the EZE analog [(3)H]AS, an assay that quantitatively measures the expression of NPC1L1 on the cell surface has been developed. It is noteworthy that whereas two cell lines (CaCo-2 and HepG2) commonly used for studying NPC1L1-dependent processes express almost undetectable levels of NPC1L1 at the cell surface, polarized Madin-Darby canine kidney (MDCKII) cells endogenously express 4 x 10(5) [(3)H]AS sites/cell under basal conditions. Depleting endogenous cholesterol with the HMG CoA reductase inhibitor lovastatin leads to a 2-fold increase in the surface expression of NPC1L1, supporting the contention that MDCKII cells respond to changes in cholesterol homeostasis by up-regulating a pathway for cholesterol influx. However, a significant increase in surface expression levels of NPC1L1 is necessary to characterize a pharmacologically sensitive, EZE-dependent pathway of cholesterol uptake in these cells. Remarkably, the affinity of EZE analogs for binding to NPC1L1 is almost identical to the IC(50) blocking cholesterol flux through NPC1L1 in MDCKII cells. From a mechanistic standpoint, these observations support the contention that EZE analogs and cholesterol share the same/overlapping binding site(s) or are tightly coupled through allosteric interactions.


Subject(s)
Azetidines/metabolism , Cholesterol/metabolism , Membrane Proteins/metabolism , Animals , Azetidines/chemistry , Caco-2 Cells , Cell Line , Cloning, Molecular , Dogs , Ezetimibe , Humans , Membrane Transport Proteins/metabolism , Reproducibility of Results , Sitosterols/metabolism , Sulfonamides/chemistry , Transfection , Tritium , beta-Lactams/metabolism
16.
J Pharmacol Exp Ther ; 321(2): 673-83, 2007 May.
Article in English | MEDLINE | ID: mdl-17314201

ABSTRACT

Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor recently approved for the treatment of type 2 diabetes, is excreted into the urine via active tubular secretion and glomerular filtration in humans. In this report, we demonstrate that sitagliptin is transported by human organic anion transporter hOAT3 (Km=162 microM), organic anion transporting polypeptide OATP4C1, and multidrug resistance (MDR) P-glycoprotein (Pgp), but not by human organic cation transporter 2 hOCT2, hOAT1, oligopeptide transporter hPEPT1, OATP2B1, and the multidrug resistance proteins MRP2 and MRP4. Our studies suggested that hOAT3, OATP4C1, and MDR1 Pgp might play a role in transporting sitagliptin into and out of renal proximal tubule cells, respectively. Sitagliptin did not inhibit hOAT1-mediated cidofovir uptake, but it showed weak inhibition of hOAT3-mediated cimetidine uptake (IC50=160 microM). hOAT3-mediated sitagliptin uptake was inhibited by probenecid, ibuprofen, furosemide, fenofibric acid, quinapril, indapamide, and cimetidine with IC50 values of 5.6, 3.7, 1.7, 2.2, 6.2, 11, and 79 microM, respectively. Sitagliptin did not inhibit Pgp-mediated transport of digoxin, verapamil, ritonavir, quinidine, and vinblastine. Cyclosporine A significantly inhibited Pgp-mediated transport of sitagliptin (IC50=1 microM). Our data indicate that sitagliptin is unlikely to be a perpetrator of drug-drug interactions with Pgp, hOAT1, or hOAT3 substrates at clinically relevant concentrations. Renal secretion of sitagliptin could be inhibited if coadministered with OAT3 inhibitors such as probenecid. However, the magnitude of interactions should be low, and the effects may not be clinically meaningful, due to the high safety margin of sitagliptin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Adenosine Deaminase Inhibitors , Dipeptidyl-Peptidase IV Inhibitors , Enzyme Inhibitors/metabolism , Glycoproteins/antagonists & inhibitors , Organic Anion Transporters, Sodium-Independent/physiology , Organic Anion Transporters/physiology , Pyrazines/metabolism , Triazoles/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Animals , Biological Transport , CHO Cells , Cricetinae , Cricetulus , Dipeptidyl Peptidase 4 , Humans , Male , Membrane Transport Proteins/physiology , Mice , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/physiology , Sitagliptin Phosphate
17.
Am J Physiol Regul Integr Comp Physiol ; 291(6): R1773-80, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16857889

ABSTRACT

The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat K(m) values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC(50) values for inhibition of cellular fluorescein accumulation was similar to that for the K(m) values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes.


Subject(s)
Flounder/genetics , Flounder/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Humans , Molecular Sequence Data , Organic Anion Transport Protein 1/chemistry , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/chemistry , Sequence Homology, Amino Acid , Species Specificity , Substrate Specificity
18.
J Pharmacol Exp Ther ; 314(2): 923-31, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15914676

ABSTRACT

The human organic anion transporter hOAT1 (SLC22A6) contributes to the uptake of a range of small organic anions across the basolateral membrane of the renal proximal tubule and drives their urinary elimination. The aim of this study was to identify genetic variants of hOAT1 and to investigate potential effects on the functional properties of this transporter. Twenty single nucleotide polymorphisms (SNPs) in hOAT1 were identified in genomic DNA from 92 individuals of African, Asian, and Caucasian origin. Two SNPs encoded changes in amino acid sequence; arginine to histidine (residue 50) and lysine to isoleucine (residue 525). Significantly, these SNPs were only present in the samples of African origin. When expressed in Xenopus oocytes, wild-type R50-hOAT1 and the variants R50H-hOAT1 and K525I-hOAT1 all mediated the probenecid-sensitive uptake of the classic organic anion para-aminohippurate (PAH). Kinetic analysis indicated that the transport affinity (K(m)) for PAH was unchanged in the variants, compared with wild type. Interestingly, the K(m) for the nucleoside phosphonate analogs adefovir, cidofovir, and tenofovir seemed to be decreased in the R50H-hOAT1 variant compared with the wild type, whereas the kinetics of K525I-hOAT1 remained unchanged. In conclusion, this is the first study to identify variation of hOAT1 in a racially diverse sample and to investigate the functional properties of the resulting variants. Since hOAT1 has been suggested as the basis of nephrotoxicity induced by nucleoside phosphonate analogs, this study raises the intriguing possibility that individuals with genetic variation in hOAT1, such as R50H, may display different handling of these drugs.


Subject(s)
Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Polymorphism, Single Nucleotide/physiology , Adenine/analogs & derivatives , Adenine/metabolism , Amino Acid Sequence , Animals , Antiviral Agents/metabolism , Cidofovir , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA/genetics , Genetic Variation , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Oocytes/drug effects , Oocytes/metabolism , Organophosphonates/metabolism , RNA, Complementary/biosynthesis , RNA, Complementary/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tenofovir , Xenopus laevis , p-Aminohippuric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...