Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 11(3): 586-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21457476

ABSTRACT

This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii.


Subject(s)
Databases, Genetic , Fungi/classification , Microsatellite Repeats , Plants/classification , Animals , Fungi/genetics , Molecular Sequence Data , Plants/genetics , Sequence Analysis, DNA
2.
PLoS One ; 3(6): e2509, 2008 Jun 25.
Article in English | MEDLINE | ID: mdl-18575588

ABSTRACT

Nematode infections are a ubiquitous feature of vertebrate life. In nature, such nematode infections are acquired by continued exposure to infective stages over a prolonged period of time. By contrast, experimental laboratory infections are typically induced by the administration of a single (and often large) dose of infective stages. Previous work has shown that the size of an infection dose can have significant effects on anti-nematode immune responses. Here we investigated the effect of different infection regimes of Strongyloides ratti, comparing single and repeated dose infections, on the host immune response that was elicited. We considered and compared infections of the same size, but administered in different ways. We considered infection size in two ways: the maximum dose of worms administered and the cumulative worm exposure time. We found that both infection regimes resulted in Th2-type immune response, characterised by IL4 and IL13 produced by S. ratti stimulated mesenteric lymph node cells, anti-S. ratti IgG(1) and intestinal rat mast cell protease II (RMCPII) production. We observed some small quantitative immunological differences between different infection regimes, in which the concentration of IL4, IL13, anti-S. ratti IgG(1) and IgG(2a) and RMCPII were affected. However, these differences were quantitatively relatively modest compared with the temporal dynamics of the anti-S. ratti immune response as a whole.


Subject(s)
Strongyloides ratti/immunology , Animals , Female , Fertility , Interleukin-13/biosynthesis , Interleukin-4/biosynthesis , Rats , Th2 Cells/immunology
3.
Int J Parasitol ; 37(13): 1501-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17597133

ABSTRACT

Negative density-dependent effects on the fitness of parasite populations are an important force in their population dynamics. For the parasitic nematode Strongyloides ratti, density-dependent fitness effects require the rat host immune response. By analysis of both measurements of components of parasite fitness and of the host immune response to different doses of S. ratti infection, we have identified specific parts of the host immune response underlying the negative density-dependent effects on the fitness of S. ratti. The host immune response changes both qualitatively from an inflammatory Th1- to a Th2-type immune profile and the Th2-type response increases quantitatively, as the density of S. ratti infection increases. Parasite survivorship was significantly negatively related to the concentration of parasite-specific IgG(1) and IgA, whereas parasite fecundity was significantly negatively related to the concentration of IgA only.


Subject(s)
Intestinal Diseases, Parasitic/immunology , Nematode Infections/immunology , Strongyloides ratti/immunology , Animals , Female , Fertility , Host-Parasite Interactions , Immunity, Mucosal , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Interleukins/analysis , Intestinal Diseases, Parasitic/parasitology , Nematode Infections/parasitology , Rats , Rats, Wistar , Strongyloides ratti/pathogenicity , Th1 Cells/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...