Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Eur J Pharm Biopharm ; 200: 114325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759899

ABSTRACT

N-glycosylation of the Fc part is a (critical) quality attribute of therapeutic antibodies and Fc-containing biotherapeutics, that impacts their stability, immunogenicity, pharmacokinetics, and effector functions. Current glycosylation analysis methods focus on the absolute amounts of glycans, neglecting the apparent glycan distribution over the entirety of proteins. The combination of the two Fc N-glycans, herein referred to as glyco-pair, therefore remains unknown, which is a major drawback for N-glycan impact assessment. This study presents a comprehensive workflow for the analysis and characterization of Fc N-glycan pairing in biotherapeutics, addressing the limitations of current glycosylation analysis methods. The applicability of the method across various biotherapeutic proteins including antibodies, bispecific antibody formats, and a Fc-Fusion protein is demonstrated, and the impact of method conditions on glycan pairing analysis is highlighted. Moreover, the influence of the molecular format, Fc backbone, production process, and cell line on glycan pairing pattern was investigated. The results underscore the significance of comprehensive glycan pairing analysis to accurately assess the impact of N-glycans on important product quality attributes of therapeutic antibodies and Fc-containing biotherapeutics.


Subject(s)
Antibodies , Biological Therapy , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/metabolism , Antibodies/chemistry , Antibodies/therapeutic use , Glycosylation , Biological Therapy/methods , Workflow , Glycoside Hydrolases/metabolism , Fucose/chemistry
2.
MAbs ; 16(1): 2318817, 2024.
Article in English | MEDLINE | ID: mdl-38444390

ABSTRACT

Bispecific antibodies (BsAbs) capable of recognizing two distinct epitopes or antigens offer promising therapeutic options for various diseases by targeting multiple pathways. The favorable pharmacokinetic (PK) properties of monoclonal antibodies (mAbs) are crucial, as they directly influence patient safety and therapeutic efficacy. For numerous mAb therapeutics, optimization of neonatal Fc receptor (FcRn) interactions and elimination of unfavorable molecular properties have led to improved PK properties. However, many BsAbs exhibit unfavorable PK, which has precluded their development as drugs. In this report, we present studies on the molecular determinants underlying the distinct PK profiles of three IgG1-scFv BsAbs. Our study indicated that high levels of nonspecific interactions, elevated isoelectric point (pI), and increased number of positively charged patches contributed to the fast clearance of IgG1-scFv. FcRn chromatography results revealed specific scFv-FcRn interactions that are unique to the IgG1-scFv, which was further supported by molecular dynamics (MD) simulation. These interactions likely stabilize the BsAb FcRn interaction at physiological pH, which in turn could disrupt FcRn-mediated BsAb recycling. In addition to the empirical observations, we also evaluated the impact of in silico properties, including pI differential between the Fab and scFv and the ratio of dipole moment to hydrophobic moment (RM) and their correlation with the observed clearance. These findings highlight that the PK properties of BsAbs may be governed by novel determinants, owing to their increased structural complexity compared to immunoglobulin G (IgG) 1 antibodies.


Subject(s)
Antibodies, Bispecific , Infant, Newborn , Humans , Antibodies, Monoclonal , Epitopes , Immunoglobulin G , Isoelectric Point
3.
J Chem Inf Model ; 63(19): 6129-6140, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37757589

ABSTRACT

The computational prediction of the viscosity of dense protein solutions is highly desirable, for example, in the early development phase of high-concentration biopharmaceutical formulations where the material needed for experimental determination is typically limited. Here, we use large-scale atomistic molecular dynamics (MD) simulations with explicit solvation to de novo predict the dynamic viscosities of solutions of a monoclonal IgG1 antibody (mAb) from the pressure fluctuations using a Green-Kubo approach. The viscosities at simulated mAb concentrations of 200 and 250 mg/mL are compared to the experimental values, which we measured with rotational rheometry. The computational viscosity of 24 mPa·s at the mAb concentration of 250 mg/mL matches the experimental value of 23 mPa·s obtained at a concentration of 213 mg/mL, indicating slightly different effective concentrations (or activities) in the MD simulations and in the experiments. This difference is assigned to a slight underestimation of the effective mAb-mAb interactions in the simulations, leading to a too loose dynamic mAb network that governs the viscosity. Taken together, this study demonstrates the feasibility of all-atom MD simulations for predicting the properties of dense mAb solutions and provides detailed microscopic insights into the underlying molecular interactions. At the same time, it also shows that there is room for further improvements and highlights challenges, such as the massive sampling required for computing collective properties of dense biomolecular solutions in the high-viscosity regime with reasonable statistical precision.

4.
Pharmaceutics ; 15(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36839885

ABSTRACT

Biological drugs intended for multi-dose application require the presence of antimicrobial preservatives to avoid microbial growth. As the presence of certain preservatives has been reported to increase protein and peptide particle formation, it is essential to choose a preservative compatible with the active pharmaceutical ingredient in addition to its preservation function. Thus, this review describes the current status of the use of antimicrobial preservatives in biologic formulations considering (i) appropriate preservatives for protein and peptide formulations, (ii) their physico-chemical properties, (iii) their in-/compatibilities with other excipients or packaging material, and (iv) their interactions with the biological compound. Further, (v) we present an overview of licensed protein and peptide formulations.

5.
Int J Pharm X ; 5: 100155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36798831

ABSTRACT

Visible light (400-800 nm) can lead to photooxidation of protein formulations, which might impair protein integrity. However, the relevant mechanism of photooxidation upon visible light exposure is still unclear for therapeutic proteins, since proteinogenic structures do not absorb light in the visible range. Here, we show that exposure of monoclonal antibody formulations to visible light, lead to the formation of reactive oxygen species (ROS), which subsequently induce specific protein degradations. The formation of ROS and singlet oxygen upon visible light exposure is investigated using electron paramagnetic resonance (EPR) spectroscopy. We describe the initial formation of ROS, most likely after direct reaction of molecular oxygen with a triplet state photosensitizer, generated from intersystem crossing of the excited singlet state. Since these radicals affect the oxygen content in the headspace of the vial, we monitored photooxidation of these mAb formulations. With increasing protein concentrations, we found (i) a decreasing headspace oxygen content in the sample, (ii) a higher relative number of radicals in solution and (iii) a higher protein degradation. Thus, the protein concentration dependence indicates the presence of higher concentration of a currently unknown photosensitizer.

6.
Eur J Pharm Biopharm ; 185: 55-70, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36708971

ABSTRACT

Sub-visible particles (SVPs) in pharmaceutical products are a critical quality attribute, and therefore should be monitored during development. Although light obscuration (LO) and microscopic particle count tests are the primary pharmacopeial methods used to quantify SVPs, flow imaging methods like Micro-Flow Imaging (MFI™) appear to overcome shortcomings of LO such as limited sensitivity concerning smaller translucent SVPs in the size range < 10 µm. Nowadays, MFI™ is routinely utilized during development of biologicals. Oftentimes multiple devices are distributed across several laboratories and departments. This poses challenges in data interpretation and consistency as well as in the use of multiple devices for one purpose. In this study, we systematically evaluated seven MFI™ instruments concerning their counting and size precision and accuracy, using an inter-comparable approach to mimic daily working routine. Therefore, we investigated three different types of particles (i) NIST certified counting standards, (ii) protein-coated particles, and (iii) stress-induced particles from a monoclonal antibody. We compared the results to alternative particle detection methods: LO and Backgrounded Membrane Imaging (BMI). Our results showed that the precision and accuracy of particle count and size, as well as the comparability of instruments, depended on the particle source and its material properties. The various MFI™ instruments investigated showed high precision (<15 %) and data generated on different instruments were of the same order of magnitude within pharmacopeial relevant size ranges for NIST certified counting standards. However, we found limitations in the upper and lower detection limits, contrary to the limits claimed by the manufacturer. In addition, proteinaceous and protein-containing particles showed statistically significant differences in particle counts, while the measured particle diameters of all sizes were quite consistent.


Subject(s)
Antibodies, Monoclonal , Biological Products , Particle Size
7.
Mol Pharm ; 19(2): 494-507, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35073097

ABSTRACT

Molecular interaction mechanisms in high-concentrated protein systems are of fundamental importance for the rational development of biopharmaceuticals such as monoclonal antibody (mAb) formulations. In such high-concentrated protein systems, the intermolecular distances between mAb molecules are reduced to the size of the protein diameter (approx. 10 nm). Thus, protein-protein interactions are more pronounced at high concentrations; so a direct extrapolation of physicochemical properties obtained from measurements at a low protein concentration of the corresponding properties at a high protein concentration is highly questionable. Besides the charge-charge interaction, the effects of molecular crowding, dipolar interaction, changes in protein hydration, and self-assembling tendency become more relevant. Here, protein hydration, protein dipole moment, and protein-protein interactions were studied in protein concentrations up to 200 mg/mL (= 1.3 mM) in different formulations for selected mAbs using dielectric relaxation spectroscopy (DRS). These data are correlated with the second virial coefficient, A2, the diffusion interaction parameter, kD, the elastic shear modulus, G', and the dynamic viscosity, η. When large contributions of dipolar protein-protein interactions were observed, the tendency of self-assembling and an increase in solution viscosity were detected. These effects were examined using specific buffer conditions. Furthermore, different types of protein-water interactions were identified via DRS, whereby the effect of high protein concentration on protein hydration was investigated for different high-concentrated liquid formulations (HCLFs).


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/chemistry , Diffusion , Viscosity
8.
Pharm Res ; 38(12): 2065-2089, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34904201

ABSTRACT

PURPOSE: Introduction of the activation energy (Ea) as a kinetic parameter to describe and discriminate monoclonal antibody (mAb) stability. METHODS: Ea is derived from intrinsic fluorescence (IF) unfolding thermograms. An apparent irreversible three-state fit model based on the Arrhenius integral is developed to determine Ea of respective unfolding transitions. These activation energies are compared to the thermodynamic parameter of van´t Hoff enthalpies (∆Hvh). Using a set of 34 mAbs formulated in four different formulations, both the apparent thermodynamic and kinetic parameters together with apparent melting temperatures are correlated collectively with each other to storage stabilities to evaluate its predictive power with respect to long-term effects potentially reflected in shelf-life. RESULTS: Ea allows for the discrimination of (i) different parent mAbs, (ii) different variants that originate from parent mAbs, and (iii) different formulations. Interestingly, we observed that the Ea of the CH2 unfolding transition shows strongest correlations with monomer and aggregate content after storage at accelerated and stress conditions when collectively compared to ∆Hvh and Tm of the CH2 transition. Moreover, the predictive parameters determined for the CH2 domain show generally stronger correlations with monomer and aggregate content than those derived for the Fab. Qualitative assessment by ranking Ea of the Fab domain showed good agreement with monomer content in storage stabilities of individual mAb sub-sets. CONCLUSION: Ea from IF unfolding transitions can be used in addition to other commonly used thermodynamic predictive parameters to discriminate and characterize thermal stability of different mAbs in different formulations. Hence, it shows great potential for antibody engineering and formulation scientists.


Subject(s)
Antibodies, Monoclonal/chemistry , Models, Chemical , Chemistry, Pharmaceutical , Kinetics , Protein Denaturation , Protein Stability , Thermodynamics
9.
Int J Pharm ; 604: 120723, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34022254

ABSTRACT

The present study investigated the photodegradation of three different monoclonal antibodies (mAb) by visible light. Several chromatographic techniques, such as size-exclusion and hydrophobic interaction chromatography as well as mass spectrometry were used to measure relative changes of various oxidation related monoclonal antibody species. The results show that visible light is indeed capable of inducing the formation of protein photo-oxidation products, such as acidic, basic, hydrophilic, and several other protein species with altered physicochemical properties. Although, the formation rate of degradants of these three protein species was dependent on the light source's intensity (I), their yield is clearly correlated to the applied light dosage (ld), which is defined as the product of light intensity I and irradiation time t (light dosage = I·t). Hence, our findings indicate that the degradation of monoclonal antibodies can be described according to the Bunsen-Roscoe reciprocity law. This correlation can be useful to assess the impact of photodegradation of biologics with regards to changes in light intensity and/or duration of light exposure of the protein, e.g. during the manufacturing of biologics.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/metabolism , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Oxidation-Reduction , Photolysis
10.
Biotechnol Bioeng ; 118(8): 2923-2933, 2021 08.
Article in English | MEDLINE | ID: mdl-33871060

ABSTRACT

A vital part of biopharmaceutical research is decision making around which lead candidate should be progressed in early-phase development. When multiple antibody candidates show similar biological activity, developability aspects are taken into account to ease the challenges of manufacturing the potential drug candidate. While current strategies for developability assessment mainly focus on drug product stability, only limited information is available on how antibody candidates with minimal differences in their primary structure behave during downstream processing. With increasing time-to-market pressure and an abundance of monoclonal antibodies (mAbs) in development pipelines, developability assessments should also consider the ability of mAbs to integrate into the downstream platform. This study investigates the influence of amino acid substitutions in the complementarity-determining region (CDR) of a full-length IgG1 mAb on the elution behavior in preparative cation exchange chromatography. Single amino acid substitutions within the investigated mAb resulted in an additional positive charge in the light chain (L) and heavy chain (H) CDR, respectively. The mAb variants showed an increased retention volume in linear gradient elution compared with the wild-type antibody. Furthermore, the substitution of tryptophan with lysine in the H-CDR3 increased charge heterogeneity of the product. A multiscale in silico analysis, consisting of homology modeling, protein surface analysis, and mechanistic chromatography modeling increased understanding of the adsorption mechanism. The results reveal the potential effects of lead optimization during antibody drug discovery on downstream processing.


Subject(s)
Amino Acid Substitution , Antibodies, Monoclonal , Immunoglobulin G , Models, Molecular , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Chromatography, Ion Exchange , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics
11.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056968

ABSTRACT

UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.

12.
Pharmaceutics ; 12(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228023

ABSTRACT

Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle-light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.

13.
MAbs ; 12(1): 1787121, 2020.
Article in English | MEDLINE | ID: mdl-32658605

ABSTRACT

The discovery of therapeutic monoclonal antibodies (mAbs) primarily focuses on their biological activity favoring the selection of highly potent drug candidates. These candidates, however, may have physical or chemical attributes that lead to unfavorable chemistry, manufacturing, and control (CMC) properties, such as low product titers, conformational and colloidal instabilities, or poor solubility, which can hamper or even prevent development and manufacturing. Hence, there is an urgent need to consider the developability of mAb candidates during lead identification and optimization. This work provides a comprehensive proof of concept study for the significantly improved developability of a mAb variant that was optimized with the help of sophisticated in silico tools relative to its difficult-to-develop parental counterpart. Interestingly, a single amino acid substitution in the variable domain of the light chain resulted in a three-fold increased product titer after stable expression in Chinese hamster ovary cells. Microscopic investigations revealed that wild type mAb-producing cells displayed potential antibody inclusions, while the in silico optimized variant-producing cells showed a rescued phenotype. Notably, the drug substance of the in silico optimized variant contained substantially reduced levels of aggregates and fragments after downstream process purification. Finally, formulation studies unraveled a significantly enhanced colloidal stability of the in silico optimized variant while its folding stability and potency were maintained. This study emphasizes that implementation of bioinformatics early in lead generation and optimization of biotherapeutics reduces failures during subsequent development activities and supports the reduction of project timelines and resources.


Subject(s)
Antibodies, Monoclonal , Protein Aggregates , Amino Acid Substitution , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , CHO Cells , Cricetulus , Humans , Solubility
14.
Pharm Res ; 37(4): 78, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236701

ABSTRACT

PURPOSE: Predicting thermal protein stability is of major interest in the development of protein-based biopharmaceuticals. Therefore, this study provides a predictive tool for determining transition enthalpies, which can be used for ranking different proteins according to their thermal stability. METHODS: Unfolding and aggregation profiles of eight different therapeutic monoclonal antibodies (mAbs) of type G, isotype 1 were investigated. The unfolding profiles were determined by intrinsic fluorescence (IF) spectroscopy and differential scanning calorimetry (DSC). A three-state unfolding fitting model was used to determine thermodynamic parameters for macromolecular multi-domain mAbs in IF experiments, like the van't Hoff enthalpy change (∆Hvh) and the entropy change (∆S) of the unfolding event. The derived values were compared to thermodynamic parameters obtained directly by calorimetry. Moreover, differences in the Fab enthalpies were used to predict aggregation behavior and protein thermal stabilities. To do so, the liquid-formulated mAbs were investigated exemplarily by size exclusion chromatography (SEC) after accelerated thermal-induced stress conditions. RESULTS: Comparing the thermodynamic parameters derived from IF spectroscopy and DSC resulted in similar values. Data generated by thermal-induced stress at 40°C show similar stability ranking as postulated through the Fab enthalpies for mAbs in two different formulations, while at 25°C a meaningful ranking is not possible, because distinct differences in the thermal stability cannot be observed. The additional consideration of Fab enthalpies to predict the 40 °C SEC ranking seems to be more reliable compared to the use of exclusively the melting temperatures or aggregation onset temperatures and times. CONCLUSION: We show that thermodynamic profiling can help predicting unfolding and aggregation properties of therapeutic mAbs at 40°C. Therefore, analyzing thermodynamic unfolding parameters is a useful and supportive tool discriminating thermal stability profiles of mAbs for further pharmaceutical development and clinical studies.


Subject(s)
Antibodies, Monoclonal/chemistry , Models, Chemical , Protein Aggregates , Protein Unfolding , Calorimetry, Differential Scanning , Protein Conformation , Protein Folding , Protein Stability , Spectrometry, Fluorescence , Thermodynamics
15.
Biophys J ; 118(5): 1067-1075, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32049058

ABSTRACT

The thermal unfolding of a recombinant monoclonal antibody IgG1 (mAb) was measured with differential scanning calorimetry (DSC). The DSC thermograms reveal a pretransition at 72°C with an unfolding enthalpy of ΔHcal ∼200-300 kcal/mol and a main transition at 85°C with an enthalpy of ∼900-1000 kcal/mol. In contrast to small single-domain proteins, mAb unfolding is a complex reaction that is analyzed with the multistate Zimm-Bragg theory. For the investigated mAb, unfolding is characterized by a cooperativity parameter σ ∼6 × 10-5 and a Gibbs free energy of unfolding of gnu ∼100 cal/mol per amino acid. The enthalpy of unfolding provides the number of amino acid residues ν participating in the unfolding reaction. On average, ν∼220 ± 50 amino acids are involved in the pretransition and ν∼850 ± 30 in the main transition, accounting for ∼90% of all amino acids. Thermal unfolding was further studied in the presence of guanidineHCl. The chemical denaturant reduces the unfolding enthalpy ΔHcal and lowers the midpoint temperature Tm. Both parameters depend linearly on the concentration of denaturant. The guanidineHCl concentrations needed to unfold mAb at 25°C are predicted to be 2-3 M for the pretransition and 5-7 M for the main transition, varying with pH. GuanidineHCl binds to mAb with an exothermic binding enthalpy, which partially compensates the endothermic mAb unfolding enthalpy. The number of guanidineHCl molecules bound upon unfolding is deduced from the DSC thermograms. The bound guanidineHCl-to-unfolded amino acid ratio is 0.79 for the pretransition and 0.55 for the main transition. The pretransition binds more denaturant molecules and is more sensitive to unfolding than the main transition. The current study shows the strength of the Zimm-Bragg theory for the quantitative description of unfolding events of large, therapeutic proteins, such as a monoclonal antibody.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Calorimetry, Differential Scanning , Circular Dichroism , Protein Denaturation , Protein Folding , Thermodynamics
16.
Eur J Pharm Sci ; 144: 105211, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31931121

ABSTRACT

Polysorbate is one of the most commonly employed non-ionic surfactant in protein containing biological formulations, whereby, it can stabilize these biomolecules under different stress conditions. Despite the fact that polysorbates are present in almost 70% of currently marketed parenteral biological drugs, polysorbate degradation in biopharmaceutical formulations has emerged as a specific quality concern. Different degradation pathways have been explored in the recent years with the aim of understanding the root cause for polysorbate degradation in biopharmaceutical formulations. In an attempt to explore hydrolytic degradation of polysorbates in accelerated degradation conditions, we studied extreme pH conditions. We investigated specific polysorbate degradation profiles depending on acidic or alkaline solution conditions. The acidic and alkaline hydrolysis of polysorbate is monitored for the total content using a fluorescence micelle assay (FMA). Additionally, the compositional changes in polysorbates were detected using reversed phase high performance liquid chromatography coupled to a charged aerosol detector (RP-HPLC-CAD). We show that the stability of polysorbate against chemical hydrolysis is dependent upon selected pH condition and differ for polysorbate 20 and polysorbate 80. Additionally, we were able to show that a degradation pathway dependent fingerprint may support the identification of the degradation root cause.


Subject(s)
Chemistry, Pharmaceutical/methods , Polysorbates/chemistry , Aerosols , Biological Products/chemistry , Chromatography, High Pressure Liquid , Drug Compounding/methods , Hydrogen-Ion Concentration , Hydrolysis , Mass Spectrometry , Micelles , Surface-Active Agents , Water
17.
Protein Eng Des Sel ; 32(3): 109-127, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31535139

ABSTRACT

Monoclonal antibodies bind with high specificity to a wide range of diverse antigens, primarily mediated by their hypervariable complementarity determining regions (CDRs). The defined antigen binding loops are supported by the structurally conserved ß-sandwich framework of the light chain (LC) and heavy chain (HC) variable regions. The LC genes are encoded by two separate loci, subdividing the entity of antibodies into kappa (LCκ) and lambda (LCλ) isotypes that exhibit distinct sequence and conformational preferences. In this work, a diverse set of techniques were employed including machine learning, force field analysis, statistical coupling analysis and mutual information analysis of a non-redundant antibody structure collection. Thereby, it was revealed how subtle changes between the structures of LCκ and LCλ isotypes increase the diversity of antibodies, extending the predetermined restrictions of the general antibody fold and expanding the diversity of antigen binding. Interestingly, it was found that the characteristic framework scaffolds of κ and λ are stabilized by diverse amino acid clusters that determine the interplay between the respective fold and the embedded CDR loops. In conclusion, this work reveals how antibodies use the remarkable plasticity of the beta-sandwich Ig fold to incorporate a large diversity of CDR loops.


Subject(s)
Complementarity Determining Regions/immunology , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/immunology , Immunoglobulin lambda-Chains/chemistry , Immunoglobulin lambda-Chains/immunology , Amino Acid Sequence , Antibody Specificity , Humans , Models, Molecular , Protein Conformation , Structure-Activity Relationship
18.
Molecules ; 24(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295948

ABSTRACT

Monoclonal antibodies (mAbs) are often needed and applied in high concentration solutions, >100 mg/mL. Due to close intermolecular distances between mAbs at high concentrations (~10-20 nm at 200 mg/mL), intermolecular interactions between mAbs and mAbs and solvent/co-solute molecules become non-negligible. Here, EPR spectroscopy is used to study the high-concentration solutions of mAbs and their effect on co-solvated small molecules, using EPR "spin probing" assay in aqueous and buffered solutions. Such, information regarding the surrounding environments of mAbs at high concentrations were obtained and comparisons between EPR-obtained micro-viscosities (rotational correlation times) and macroscopic viscosities measured by rheology were possible. In comparison with highly viscous systems like glycerol-water mixtures, it was found that up to concentrations of 50 mg/mL, the mAb-spin probe systems have similar trends in their macro- (rheology) and micro-viscosities (EPR), whereas at very high concentrations they deviate strongly. The charged spin probes sense an almost unchanged aqueous solution even at very high concentrations, which in turn indicates the existence of large solvent regions that despite their proximity to large mAbs essentially offer pure water reservoirs for co-solvated charged molecules. In contrast, in buffered solutions, amphiphilic spin probes like TEMPO interact with the mAb network, due to slight charge screening. The application of EPR spectroscopy in the present work has enabled us to observe and discriminate between electrostatic and hydrophobic kinds of interactions and depict the potential underlying mechanisms of network formation at high concentrations of mAbs. These findings could be of importance as well for the development of liquid-liquid phase separations often observed in highly concentrated protein solutions.


Subject(s)
Antibodies, Monoclonal/chemistry , Electron Spin Resonance Spectroscopy , Algorithms , Glycerol/chemistry , Kinetics , Models, Chemical , Solubility , Solvents/chemistry , Viscosity
19.
Biophys J ; 116(9): 1637-1649, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31023536

ABSTRACT

We report the x-ray crystal structure of intact, full-length human immunoglobulin (IgG4) at 1.8 Å resolution. The data for IgG4 (S228P), an antibody targeting the natriuretic peptide receptor A, show a previously unrecognized type of Fab-Fc orientation with a distorted λ-shape in which one Fab-arm is oriented toward the Fc portion. Detailed structural analysis by x-ray crystallography and molecular simulations suggest that this is one of several conformations coexisting in a dynamic equilibrium state. These results were confirmed by small angle x-ray scattering in solution. Furthermore, electron microscopy supported these findings by preserving molecule classes of different conformations. This study fosters our understanding of IgG4 in particular and our appreciation of antibody flexibility in general. Moreover, we give insights into potential biological implications, specifically for the interaction of human anti-natriuretic peptide receptor A IgG4 with the neonatal Fc receptor, Fcγ receptors, and complement-activating C1q by considering conformational flexibility.


Subject(s)
Antibodies/chemistry , Immunoglobulin G/chemistry , Receptors, Atrial Natriuretic Factor/immunology , Animals , Binding Sites , CHO Cells , Cricetulus , Crystallization , Models, Molecular , Protein Binding , Protein Conformation , Receptors, IgG/chemistry
20.
Int J Pharm ; 552(1-2): 422-436, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30300706

ABSTRACT

Biotherapeutic protein formulations are often high concentration liquid protein solutions, which are required to be stable under pharmaceutically relevant storage conditions and presence of external stress. Non-ionic detergents like polysorbate have been the most commonly used detergent to maintain formulation stability. Recently, particle formation in polysorbate containing biotherapeutic formulations has arisen as a major quality concern and potential patient risk factor. In this review, we provide a general overview into (i) degradation of polysorbates, (ii) polysorbate analytics, (iii) particle formation induced by polysorbate degradation and root causes thereof, (iv) particle composition and (v) various influencing factors that might lead to particle formation. Consequently, we explore the role of polysorbate degradation in particle formation. Additionally, various degradation pathways and the current discussed root causes are reviewed.


Subject(s)
Biological Products/chemistry , Polysorbates/chemistry , Surface-Active Agents/chemistry , Biological Therapy , Drug Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...