Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 122(4): 198-208, 2017 12.
Article in English | MEDLINE | ID: mdl-29173981

ABSTRACT

Mutations in GBA1 encountered in Gaucher disease are a leading risk factor for Parkinson disease and associated Lewy body disorders. Many GBA1 mutation carriers, especially those with severe or null GBA1 alleles, have earlier and more progressive parkinsonism. To model the effect of partial glucocerebrosidase deficiency on neurological progression in vivo, mice with a human A53T α-synuclein (SNCAA53T) transgene were crossed with heterozygous null gba mice (gba+/-). Survival analysis of 84 mice showed that in gba+/-//SNCAA53T hemizygotes and homozygotes, the symptom onset was significantly earlier than in gba+/+//SNCAA53T mice (p-values 0.023-0.0030), with exacerbated disease progression (p-value <0.0001). Over-expression of SNCAA53T had no effect on glucocerebrosidase levels or activity. Immunoblotting demonstrated that gba haploinsufficiency did not lead to increased levels of either monomeric SNCA or insoluble high molecular weight SNCA in this model. Immunohistochemical analyses demonstrated that the abundance and distribution of SNCA pathology was also unaltered by gba haploinsufficiency. Thus, while the underlying mechanism is not clear, this model shows that gba deficiency impacts the age of onset and disease duration in aged SNCAA53T mice, providing a valuable resource to identify modifiers, pathways and possible moonlighting roles of glucocerebrosidase in Parkinson pathogenesis.


Subject(s)
Gaucher Disease/genetics , Glucosylceramidase/genetics , Haploinsufficiency , Parkinson Disease/genetics , alpha-Synuclein/genetics , Age of Onset , Animals , Brain/metabolism , Disease Models, Animal , Female , Gaucher Disease/complications , Glucosylceramidase/deficiency , Glucosylceramides/analysis , Heterozygote , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Parkinson Disease/etiology , Psychosine/analogs & derivatives , Psychosine/analysis , Transgenes , alpha-Synuclein/analysis , alpha-Synuclein/deficiency , alpha-Synuclein/metabolism , beta-Glucosidase/deficiency , beta-Glucosidase/genetics
2.
Mol Genet Metab ; 99(3): 275-82, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004604

ABSTRACT

In Gaucher disease (GD), the inherited deficiency of glucocerebrosidase results in the accumulation of glucocerebroside within lysosomes. Although almost 300 mutations in the glucocerebrosidase gene (GBA) have been identified, the ability to predict phenotype from genotype is quite limited. In this study, we sought to examine potential GBA transcriptional regulatory elements for variants that contribute to phenotypic diversity. Specifically, we generated the genomic sequence for the orthologous genomic region ( approximately 39.4kb) encompassing GBA in eight non-human mammals. Computational comparisons of the resulting sequences, using human sequence as the reference, allowed the identification of multi-species conserved sequences (MCSs). Further analyses predicted the presence of two putative clusters of transcriptional regulatory elements upstream and downstream of GBA, containing five and three transcription factor-binding sites (TFBSs), respectively. A firefly luciferase (Fluc) reporter construct containing sequence flanking the GBA gene was used to test the functional consequences of altering these conserved sequences. The predicted TFBSs were individually altered by targeted mutagenesis, resulting in enhanced Fluc expression for one site and decreased expression for seven others sites. Gel-shift assays confirmed the loss of nuclear-protein binding for several of the mutated constructs. These identified conserved non-coding sequences flanking GBA could play a role in the transcriptional regulation of the gene contributing to the complexity underlying the phenotypic diversity seen in GD.


Subject(s)
Computational Biology/methods , Gaucher Disease , Gene Expression Regulation, Enzymologic , Glucosylceramidase , Animals , Base Sequence , Binding Sites , COS Cells , Cattle , Chlorocebus aethiops , Conserved Sequence , Dogs , Gaucher Disease/genetics , Gaucher Disease/physiopathology , Glucosylceramidase/chemistry , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Mice , Mutagenesis, Site-Directed , Phenotype , Species Specificity , Transcription Factors/metabolism , Transcription, Genetic , Transfection , Vertebrates/classification , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...