Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35258392

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Subject(s)
Autophagy , Inflammatory Bowel Diseases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cysteine/metabolism , DNA, Mitochondrial/metabolism , Dextrans/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Formaldehyde/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Isothiocyanates , Lipopolysaccharides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Reactive Oxygen Species/metabolism , Respiration , Sirolimus
2.
Cell Physiol Biochem ; 46(6): 2601-2615, 2018.
Article in English | MEDLINE | ID: mdl-29763890

ABSTRACT

BACKGROUND/AIMS: MiRNA-301a-3p is an oncogenic miRNA whose expression is associated with tumor development, metastases and overall poor prognosis. Estrogen receptor α (ERα) is one of the estrogen hormone-activated transcription factors, which regulates a large number of genes and is involved in the mammary gland development. Expression of ERα is considered to be a good indicator for endocrine therapy and breast cancer survival. Loss of ERα in breast cancer patients indicates invasiveness and poor prognosis. In this study, we focus on the regulation of ERα by miR-301a and its role in transition from estrogen-dependent to estrogen-independent breast cancer. METHODS: Expression of miR-301a-3p was measured by qRT-PCR in tumor tissue samples from 111 patients with primary breast carcinoma and in mammospheres representing in vitro model of cancer stem-like cells. Dual reporter luciferase assay and complementary experiments were performed to validate ESR1 as a direct target of miR-301a-3p. The effect of miR-301a-3p on estrogen signaling was evaluated on the level of gene and protein expression and growth response to estrogens. Finally, the effect of miR-301a-3p expression on tumor growth was studied in nude mice. RESULTS: We identified ESR1 as a direct target of miR-301a-3p. Ectopic miR-301a-3p causes a decrease in ESR1 mRNA and protein level and modulates the expression of ERα target genes in ERα positive breast cancer cells. Consistently, miR-301a-3p causes a decrease in sensitivity of MCF7 cells to 17ß-estradiol and inhibits the growth of estrogen dependent tumor in nude mice. Yet, the mice tumors have significantly increased expression of genes related to cancer stem-like cells and epithelial to mesenchymal transition suggesting enrichment of the population of cells with more invasive properties, in line with our observation that miR-301a-3p expression is highly increased in mammospheres which show a decrease in estrogenic signaling. Importantly, miR-301a-3P level is also increased in primary breast cancer samples exhibiting an ER/PR negative phenotype. CONCLUSION: Our results confirm ESR1 as a direct target of miR-301a-3p and suggest that miR-301a-3p likely contributes to development of estrogen independence, which leads to a more invasive phenotype of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , 3' Untranslated Regions , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Estrogen Receptor alpha/analysis , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Signal Transduction
3.
Free Radic Biol Med ; 112: 253-266, 2017 11.
Article in English | MEDLINE | ID: mdl-28774815

ABSTRACT

Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear. As most somatic cells are in non-proliferative state, the features associated with the ETC in quiescence could account for some of the specificity observed. Here we report that quiescent cells, despite increased utilization of the ETC and enhanced supercomplex assembly, are less susceptible to cell death induced by ETC disruption when glucose is not limiting. Mechanistically, this is mediated by the increased detoxification of ETC-derived ROS by mitochondrial antioxidant defense, principally by the superoxide dismutase 2 - thioredoxin axis. In contrast, under conditions of glucose limitation, cell death is induced preferentially in quiescent cells and is correlated with intracellular ATP depletion but not with ROS. This is related to the inability of quiescent cells to compensate for the lost mitochondrial ATP production by the upregulation of glucose uptake. Hence, elevated ROS, not the loss of mitochondrially-generated ATP, are responsible for cell death induction by ETC disruption in ample nutrients condition, e.g. in well perfused healthy tissues, where antioxidant defense imparts specificity. However, in conditions of limited glucose, e.g. in poorly perfused tumors, ETC disruption causes rapid depletion of cellular ATP, optimizing impact towards tumor-associated dormant cells. In summary, we propose that antioxidant defense in quiescent cells is aided by local glucose limitations to ensure selectivity of ETC inhibition-induced cell death.


Subject(s)
Cell Death/genetics , Electron Transport Chain Complex Proteins/genetics , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Thioredoxins/genetics , Adenosine Triphosphate/metabolism , Cell Cycle/genetics , Cell Line, Transformed , Cell Line, Tumor , Cell Respiration , Electron Transport , Electron Transport Chain Complex Proteins/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression , Glucose/metabolism , Humans , Oxidation-Reduction , Superoxide Dismutase/metabolism , Thioredoxins/metabolism
4.
Antioxid Redox Signal ; 26(2): 84-103, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27392540

ABSTRACT

AIMS: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Electron Transport Chain Complex Proteins/metabolism , Receptor, ErbB-2/metabolism , Antineoplastic Agents/chemistry , Biomarkers , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cell Respiration/drug effects , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Female , Humans , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Protein Binding , Reactive Oxygen Species/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...