Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(25): e2219790120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307450

ABSTRACT

Dendritic cells (DCs) orchestrate immune responses by presenting antigenic peptides on major histocompatibility complex (MHC) molecules to T cells. Antigen processing and presentation via MHC I rely on the peptide-loading complex (PLC), a supramolecular machinery assembled around the transporter associated with antigen processing (TAP), which is the peptide transporter in the endoplasmic reticulum (ER) membrane. We studied antigen presentation in human DCs by isolating monocytes from blood and differentiating them into immature and mature DCs. We uncovered that during DC differentiation and maturation, additional proteins are recruited to the PLC, including B-cell receptor-associated protein 31 (BAP31), vesicle-associated membrane protein-associated protein A (VAPA), and extended synaptotagmin-1 (ESYT1). We demonstrated that these ER cargo export and contact site-tethering proteins colocalize with TAP and are within 40 nm proximity of the PLC, suggesting that the antigen processing machinery is located near ER exit- and membrane contact sites. While CRISPR/Cas9-mediated deletion of TAP and tapasin significantly reduced MHC I surface expression, single-gene deletions of the identified PLC interaction partners revealed a redundant role of BAP31, VAPA, and ESYT1 in MHC I antigen processing in DCs. These data highlight the dynamics and plasticity of PLC composition in DCs that previously was not recognized by the analysis of cell lines.


Subject(s)
Major Histocompatibility Complex , Peptides , Humans , Antigen Presentation , Dendritic Cells , Histocompatibility Antigens Class I , Synaptotagmins
3.
Nat Immunol ; 22(2): 140-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33349708

ABSTRACT

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Subject(s)
Antigen Presentation , Cross-Priming , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Phagosomes/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , T-Lymphocytes/metabolism , Animals , Cell Death , Coculture Techniques , Dendritic Cells/immunology , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Humans , Lectins, C-Type/genetics , Ligands , Mice , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/immunology , Phosphorylation , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Signal Transduction , Syk Kinase/metabolism , T-Lymphocytes/immunology
4.
Blood Adv ; 3(6): 839-850, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30867143

ABSTRACT

Dendritic cells (DCs) take up antigen in the periphery, migrate to secondary lymphoid organs, and present processed antigen fragments to adaptive immune cells and thus prime antigen-specific immunity. During local inflammation, recirculating monocytes are recruited from blood to the inflamed tissue, where they differentiate to macrophages and DCs. In this study, we found that monocytes showed high transporter associated with antigen processing (TAP)-dependent peptide compartmentalization and that after antigen pulsing, they were not able to efficiently stimulate antigen-specific T lymphocytes. Nevertheless, upon in vitro differentiation to monocyte-derived DCs, TAP-dependent peptide compartmentalization as well as surface major histocompatibility complex I turnover decreased and the cells efficiently restimulated T lymphocytes. Although TAP-dependent peptide compartmentalization decreased during DC differentiation, TAP expression levels increased. Furthermore, TAP relocated from early endosomes in monocytes to the endoplasmic reticulum (ER) and lysosomal compartments in DCs. Collectively, these data are compatible with the model that during monocyte-to-DC differentiation, the subcellular relocation of TAP and the regulation of its activity assure spatiotemporal separation of local antigen uptake and processing by monocytes and efficient T-lymphocyte stimulation by DCs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cell Compartmentation , Cell Differentiation/immunology , Dendritic Cells/cytology , Monocytes/cytology , Antigen Presentation/immunology , Cells, Cultured , Dendritic Cells/immunology , Humans , Lysosomes/metabolism , Monocytes/immunology , T-Lymphocytes/immunology
5.
Cell ; 172(5): 1022-1037.e14, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29429633

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.


Subject(s)
Dendritic Cells/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Chemokine CCL5/metabolism , Chemokines, C/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Mutation/genetics , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...