Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 4(3): txaa145, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33094272

ABSTRACT

Grazing-based dairy operations require productive, high-quality forages capable of supporting the nutritional needs of mid-lactation dairy cows. Our objectives were to evaluate primary and regrowth harvests of two cultivars of sudangrass (SU), sorghum-sudangrass (S×SU), and pearl millet (PM) forages for growth and nutritive characteristics within the specific context of suitability for grazing by dairy cows. Three harvest cycles, including primary and regrowth cycles in 2016, and a single harvest cycle of primary growth in 2017, were evaluated at two locations (Prairie du Sac and Marshfield, WI). Within each cycle, sampling was initiated when canopy height was about 41 cm and continued thereafter on weekly intervals for 5 weeks, resulting in six equally spaced sampling dates per harvest cycle. Data were analyzed as a split-plot design with cultivars (6) as whole-plots arranged in randomized complete blocks and weekly harvest dates (6) as subplots. Yields of dry matter (DM) were less consistent at the more northern location (Marshfield), which is known for its heavier, poorly drained soils. Despite locational differences, the taller-growing cultivar within each forage type frequently exhibited yield advantages over dwarf or shorter-growing cultivars; this occurred for 7 of 9 intra-forage-type comparisons (P ≤ 0.021) across three harvest cycles at Prairie du Sac, and for 6 of 9 similar comparisons (P ≤ 0.032) at Marshfield. In 2016, shorter-growing cultivars had greater percentages of leaf in 4 of 6 intra-forage-type comparisons at both locations (P ≤ 0.004), which is especially relevant for grazing. Similarly, PM cultivars exhibited shorter canopy heights (P ≤ 0.002), but greater percentages of leaf (P < 0.001), than all other cultivars during all harvest cycles at both locations. However, the greater leaf percentages exhibited by PM cultivars did not translate into reduced percentages of structural plant fiber (asNDFom) on a whole-plant basis during any harvest cycle at either location; furthermore, asNDFom concentrations for PM cultivars were greater (P ≤ 0.047) than observed for other cultivars within 3 of 6 harvest cycles across both locations. Ruminal in-situ degradation of asNDFom for whole-plant forages based on a 48-h incubation was significantly greater (P ≤ 0.006) for PM compared with other cultivars in 4 of 6 harvest cycles. Pearl millet cultivars generally exhibited more suitable characteristics for grazing livestock than SU or S×SU cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...