Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Article in English | MEDLINE | ID: mdl-38760152

ABSTRACT

BACKGROUND: The nigrostriatal system is especially vulnerable to neurodegeneration in Parkinson's disease (PD) and the blood-brain barrier (BBB) is a limiting factor for delivery of therapeutic agents to the brain. This pilot study aimed to demonstrate safety, feasibility and tissue penetration (by 18F-Choline-positron emission tomography (PET)) of MR-guided focused ultrasound (MRgFUS) simultaneous BBB opening (BBB-O) in the substantia nigra (SN) and putamen in PD. METHODS: Three patients underwent MRgFUS for midbrain and putamen BBB-O. Patients were evaluated clinically and underwent brain MRI with gadolinium (baseline, 24 hours, 14 days and 3 months postprocedure). In two patients, BBB-O was repeated after 2-3 weeks, and 18F-Choline-PET was performed immediately after. RESULTS: The right SN and putamen were simultaneously opened unilaterally in 3 patients once and the left SN in 1 patient in a different session. No severe clinical or neuroimaging adverse events developed in any patient. 18F-Choline-PET uptake was enhanced in the targeted SN and putamen regions. CONCLUSION: BBB-O of the nigrostriatal system is a feasible and well-tolerated approach in patients with PD. 18F-Choline-PET uptake indicates penetration into the parenchyma after BBB-O, which suggests that the opening is functionally effective. This minimally invasive technique could facilitate delivery of putative neurorestorative molecules to brain regions vulnerable to neurodegeneration.

2.
Nat Commun ; 15(1): 4150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755164

ABSTRACT

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Subject(s)
Amyloid , Biofilms , Caenorhabditis elegans , Dopaminergic Neurons , Gastrointestinal Microbiome , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Humans , Biofilms/growth & development , Amyloid/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Parkinson Disease/pathology , Mice , Dopaminergic Neurons/metabolism , Autophagy , Neurodegenerative Diseases/metabolism , Mice, Inbred C57BL , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Brain/metabolism , Brain/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
3.
Sci Adv ; 9(16): eadf4888, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075119

ABSTRACT

Intracerebral vector delivery in nonhuman primates has been a major challenge. We report successful blood-brain barrier opening and focal delivery of adeno-associated virus serotype 9 vectors into brain regions involved in Parkinson's disease using low-intensity focus ultrasound in adult macaque monkeys. Openings were well tolerated with generally no associated abnormal magnetic resonance imaging signals. Neuronal green fluorescent protein expression was observed specifically in regions with confirmed blood-brain barrier opening. Similar blood-brain barrier openings were safely demonstrated in three patients with Parkinson's disease. In these patients and in one monkey, blood-brain barrier opening was followed by 18F-Choline uptake in the putamen and midbrain regions based on positron emission tomography. This indicates focal and cellular binding of molecules that otherwise would not enter the brain parenchyma. The less-invasive nature of this methodology could facilitate focal viral vector delivery for gene therapy and might allow early and repeated interventions to treat neurodegenerative disorders.


Subject(s)
Blood-Brain Barrier , Parkinson Disease , Animals , Blood-Brain Barrier/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Parkinson Disease/genetics , Brain/metabolism , Macaca , Positron-Emission Tomography , Magnetic Resonance Imaging
4.
Expert Opin Drug Discov ; 18(1): 13-23, 2023 01.
Article in English | MEDLINE | ID: mdl-36538833

ABSTRACT

INTRODUCTION: A key pathological event occurring in Parkinson's disease (PD) is the transneuronal spreading of alpha-synuclein (α-syn). Other hallmarks of PD include neurodegeneration, glial activation, and immune cell infiltration in susceptible brain regions. Although preclinical models can mimic most of the key characteristics of PD, it is crucial to know the biological bases of individual differences between them when choosing one over another, to ensure proper interpretation of the results and to positively influence the outcome of the experiments. AREAS COVERED: This review provides an overview of current preclinical models actively used to study the interplay between α-syn pathology, neuroinflammation and immune response in PD but also to explore new potential preclinical models or emerging therapeutic strategies intended to fulfill the unmet medical needs in this disease. Lastly, this review also considers the current state of the ongoing clinical trials of new drugs designed to target these processes and delay the initiation or progression of the disease. EXPERT OPINION: Anti-inflammatory and immunomodulatory agents have been demonstrated to be very promising candidates for reducing disease progression; however, more efforts are needed to reduce the enormous gap between these and dopaminergic drugs, which have dominated the therapeutic market for the last sixty years.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/therapeutic use , Neuroinflammatory Diseases , Parkinson Disease/drug therapy , Disease Models, Animal , Immunity
5.
Mov Disord ; 37(10): 2057-2065, 2022 10.
Article in English | MEDLINE | ID: mdl-35765711

ABSTRACT

BACKGROUND: Parkinson's disease (PD) exhibits a high prevalence of dementia as disease severity and duration progress. Focused ultrasound (FUS) has been applied for transient blood-brain barrier (BBB) opening of cortical regions in neurodegenerative disorders. The striatum is a primary target for delivery of putative therapeutic agents in PD. OBJECTIVE: Here, we report a prospective, single-arm, nonrandomized, proof-of-concept, phase I clinical trial (NCT03608553 amended) in PD with dementia to test the safety and feasibility of striatal BBB opening in PD patients. METHODS: Seven PD patients with cognitive impairment were treated for BBB opening in the posterior putamen. This was performed in two sessions separated by 2 to 4 weeks, where the second session included bilateral putamina opening in 3 patients. Primary outcome measures included safety and feasibility of focal striatal BBB opening. Changes in motor and cognitive functions, magnetic resonance imaging (MRI), 18 F-fluorodopa (FDOPA), and ß-amyloid PET (positron emission tomography) images were determined. RESULTS: The procedure was feasible and well tolerated, with no serious adverse events. No neurologically relevant change in motor and cognitive (battery of neuropsychological tests) functions was recognized at follow-up. MRI revealed putamen BBB closing shortly after treatment (24 hours to 14 days) and ruled out hemorrhagic and ischemic lesions. There was a discrete but significant reduction in ß-amyloid uptake in the targeted region and no change in FDOPA PET. CONCLUSIONS: These initial results indicate that FUS-mediated striatal BBB opening is feasible and safe and therefore could become an effective tool to facilitate the delivery of putative neurorestorative molecules in PD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Dementia , Parkinson Disease , Amyloid beta-Peptides , Blood-Brain Barrier , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Dihydroxyphenylalanine/analogs & derivatives , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Prospective Studies
6.
Neuropathol Appl Neurobiol ; 48(5): e12812, 2022 08.
Article in English | MEDLINE | ID: mdl-35274336

ABSTRACT

AIMS: The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. METHODS: Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. RESULTS: In control monkeys, the projection neurons, which express the dopamine-and-cAMP-regulated-phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18%; 2.6%), dinucleotide phosphate-diaphorase (NADPH+: ~13%; 1.8%), choline acetyltransferase (ChAT+: ~11%; 1.5%) and tyrosine hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. CONCLUSIONS: These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implications.


Subject(s)
Corpus Striatum , Dopamine , Interneurons , Neurons , Parkinsonian Disorders , Animals , Corpus Striatum/cytology , Corpus Striatum/pathology , Haplorhini , Interneurons/cytology , Neurons/cytology , Parkinsonian Disorders/physiopathology
7.
Neurobiol Dis ; 167: 105669, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35219857

ABSTRACT

Dopaminergic denervation in patients with Parkinson's disease is associated with changes in brain metabolism. Cerebral in-vivo mapping of glucose metabolism has been studied in severe stable parkinsonian monkeys, but data on brain metabolic changes in early stages of dopaminergic depletion of this model is lacking. Here, we report cerebral metabolic changes associated with progressive nigrostriatal lesion in the pre-symptomatic and symptomatic stages of the progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson's Disease. Monkeys (Macaca fascicularis) received MPTP injections biweekly to induce progressive grades of dopamine depletion. Monkeys were sorted according to motor scale assessments in control, asymptomatic, recovered, mild, and severe parkinsonian groups. Dopaminergic depletion in the striatum and cerebral metabolic patterns across groups were studied in vivo by positron emission tomography (PET) using monoaminergic ([11C]-dihydrotetrabenazine; 11C-DTBZ) and metabolic (2-[18F]-fluoro-2-deoxy-d-glucose; 18F-FDG) radiotracers. 11C-DTBZ-PET analysis showed progressive decrease of binding potential values in the striatum of monkeys throughout MPTP administration and the development of parkinsonian signs. 18F-FDG analysis in asymptomatic and recovered animals showed significant hypometabolism in temporal and parietal areas of the cerebral cortex in association with moderate dopaminergic nigrostriatal depletion. Cortical hypometabolism extended to involve a larger area in mild parkinsonian monkeys, which also exhibited hypermetabolism in the globus pallidum pars interna and cerebellum. In severe parkinsonian monkeys, cortical hypometabolism extended further to lateral-frontal cortices and hypermetabolism also ensued in the thalamus and cerebellum. Unbiased histological quantification of neurons in Brodmann's area 7 in the parietal cortex did not reveal neuron loss in parkinsonian monkeys versus controls. Early dopaminergic nigrostriatal depletion is associated with cortical, mainly temporo-parietal hypometabolism unrelated to neuron loss. These findings, together with recent evidence from Parkinson's Disease patients, suggest that early cortical hypometabolism may be associated and driven by subcortical changes that need to be evaluated appropriately. Altogether, these findings could be relevant when potential disease modifying therapies become available.


Subject(s)
Parkinsonian Disorders , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Cerebral Cortex/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Humans , Parkinsonian Disorders/metabolism , Positron-Emission Tomography/methods , Primates/metabolism
8.
Nat Rev Neurosci ; 23(2): 115-128, 2022 02.
Article in English | MEDLINE | ID: mdl-34907352

ABSTRACT

For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.


Subject(s)
Efferent Pathways/physiopathology , Neural Pathways/physiopathology , Parkinson Disease/physiopathology , Animals , Humans , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/physiology
9.
Front Aging Neurosci ; 13: 698979, 2021.
Article in English | MEDLINE | ID: mdl-34744683

ABSTRACT

Proteinaceous inclusions, called Lewy bodies (LBs), are used as a pathological hallmark for Parkinson's disease (PD). Recent studies suggested a prion-like spreading mechanism for α-synucleinopathy where early neuropathological deposits occur, among others, in the olfactory bulb (OB) and amygdala. LBs contain insoluble α-synuclein and many other ubiquitinated proteins, suggesting a role of protein degradation system failure in PD pathogenesis. Therefore, we wanted to study the effects of a proteasomal inhibitor, lactacystin, on the aggregability and transmissibility of α-synuclein in the OB and amygdala. We performed injections of lactacystin in the OB and amygdala of wild-type mice. Motor behavior, markers of neuroinflammation, α-synuclein, and dopaminergic integrity were assessed by immunohistochemistry. Overall, there were no differences in the number of neurons and α-synuclein expression in these regions following injection of lactacystin into either the OB or amygdala. Microglial and astroglial labeling appeared to be correlated with surgery-induced inflammation or local effects of lactacystin. Consistent with the behavior and pathological findings, there was no loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. Our data showed that long-term lactacystin injections in extra nigrostriatal regions may not mimic spreading aspects of PD and reinforce the special vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc).

10.
Food Chem Toxicol ; 152: 112164, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33819549

ABSTRACT

Some epidemiological studies with different levels of evidence have pointed to a higher risk of Parkinson's disease (PD) after exposure to environmental toxicants. A practically unexplored potential etiological factor is a group of naturally-occurring fungal secondary metabolites called mycotoxins. The mycotoxin ochratoxin A (OTA) has been reported to be neurotoxic in mice. To further identify if OTA exposure could have a role in PD pathology, Balb/c mice were orally treated with OTA (0.21, 0.5 mg/kg bw) four weeks and left for six months under normal diet. Effects of OTA on the onset, progression of alpha-synuclein pathology and development of motor deficits were evaluated. Immunohistochemical and biochemical analyses showed that oral subchronic OTA treatment induced loss of striatal dopaminergic innervation and dopaminergic cell dysfunction responsible for motor impairments. Phosphorylated alpha-synuclein levels were increased in gut and brain. LAMP-2A protein was decreased in tissues showing alpha-synuclein pathology. Cell cultures exposed to OTA exhibited decreased LAMP-2A protein, impairment of chaperone-mediated autophagy and decreased alpha-synuclein turnover which was linked to miRNAs deregulation, all reminiscent of PD. These results support the hypothesis that oral exposure to low OTA doses in mice can lead to biochemical and pathological changes reported in PD.


Subject(s)
Mycotoxins/toxicity , Ochratoxins/toxicity , Parkinson Disease/etiology , Parkinson Disease/metabolism , Administration, Oral , Animals , Dopaminergic Neurons/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , Mesencephalon/pathology , Mice, Inbred BALB C , MicroRNAs/metabolism , Mycotoxins/administration & dosage , Ochratoxins/administration & dosage , Parkinson Disease/pathology , Pars Compacta/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Phosphorylation/drug effects , Time Factors , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
11.
Sci Rep ; 11(1): 3318, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558635

ABSTRACT

Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/virology , Camelids, New World/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Immunization , Male , Neutralization Tests , Peptide Library , Protein Binding/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Transfection
12.
Neurosci Res ; 170: 330-340, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33316306

ABSTRACT

Neuroinflammation is increasingly recognized as an important feature in the pathogenesis of Parkinson's disease (PD). However, it remains unclear whether neuroinflammation contributes to nigral degeneration in PD or is merely a secondary marker of neurodegeneration. We aimed to investigate the temporal relationship between synucleopathy, neuroinflammation and nigrostriatal degeneration in a mouse model of PD. Mice received unilateral intrastriatal injection of alpha-synuclein pre-formed fibrils, alpha-synuclein monomer or vehicle and were sacrificed at 15, 30 and 90 days post-injection. Intrastriatal inoculation of alpha-synuclein fibrils led to significant alpha-synuclein aggregation in the substantia nigra peaking at 30 days after injection while the significant increase in Iba-1 cells, GFAP cells and IL-1ß expression peaked earlier at 15 days. At 90 days, the striatal dopaminergic denervation was associated with astroglial activation. Alpha-synuclein monomer did not result in long-term glia activation or increase in inflammatory markers. The spread of alpha-synuclein aggregates into the cortex was not associated with any changes to neuroinflammatory markers. Our results demonstrate that in the substantia nigra glial activation is an early event that precedes alpha-synuclein inclusion formation, suggesting neuroinflammation could play an important early role in the pathogenesis of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Mice , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
13.
Brain Commun ; 2(2): fcaa105, 2020.
Article in English | MEDLINE | ID: mdl-32954345

ABSTRACT

Administration of recombinant glial cell line-derived neurotrophic factor into the putamen has been tested in preclinical and clinical studies to evaluate its neuroprotective effects on the progressive dopaminergic neuronal degeneration that characterizes Parkinson's disease. However, intracerebral glial cell line-derived neurotrophic factor infusion is a challenging therapeutic strategy, with numerous potential technical and medical limitations. Most of these limitations could be avoided if the production of endogenous glial cell line-derived neurotrophic factor could be increased. Glial cell line-derived neurotrophic factor is naturally produced in the striatum from where it exerts a trophic action on the nigrostriatal dopaminergic pathway. Most of striatal glial cell line-derived neurotrophic factor is synthesized by a subset of GABAergic interneurons characterized by the expression of parvalbumin. We sought to identify molecular targets specific to those neurons and which are putatively associated with glial cell line-derived neurotrophic factor synthesis. To this end, the transcriptomic differences between glial cell line-derived neurotrophic factor-positive parvalbumin neurons in the striatum and parvalbumin neurons located in the nearby cortex, which do not express glial cell line-derived neurotrophic factor, were analysed. Using mouse reporter models, we have defined the genomic signature of striatal parvalbumin interneurons obtained by fluorescence-activated cell sorting followed by microarray comparison. Short-listed genes were validated by additional histological and molecular analyses. These genes code for membrane receptors (Kit, Gpr83, Tacr1, Tacr3, Mc3r), cytosolic proteins (Pde3a, Crabp1, Rarres2, Moxd1) and a transcription factor (Lhx8). We also found the proto-oncogene cKit to be highly specific of parvalbumin interneurons in the non-human primate striatum, thus highlighting a conserved expression between species and suggesting that specific genes identified in mouse parvalbumin neurons could be putative targets in the human brain. Pharmacological stimulation of four G-protein-coupled receptors enriched in the striatal parvalbumin interneurons inhibited Gdnf expression presumably by decreasing cyclic adenosine monophosphate formation. Additional experiments with pharmacological modulators of adenylyl cyclase and protein kinase A indicated that this pathway is a relevant intracellular route to induce Gdnf gene activation. This preclinical study is an important step in the ongoing development of a specific pro-endo-glial cell line-derived neurotrophic factor pharmacological strategy to treat Parkinson's disease.

14.
Neuropharmacology ; 170: 107806, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31589886

ABSTRACT

Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra and dopamine depletion in the striatum. Non-dopaminergic systems are also affected, including the serotonergic system. Enhanced striatal serotonergic innervation is a proposed compensatory mechanism for the dopaminergic deficit. Meanwhile a serotonergic deficit has been suggested as preceding the nigrostriatal dopaminergic pathology in PD. Our aim was to assess the serotonergic innervation of the striatum in a model of progressive experimental parkinsonism in macaques, from pre-symptomatic to symptomatic stages. The neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) was administered to adult macaque monkeys using a slow intoxication protocol. The intoxicated animals were classified into asymptomatic, recovered, moderate and severe parkinsonian, based on their motor behavior. The serotonergic innervation was studied by immunohistochemistry against serotonin (5-HT). In the striatum, the density of 5-HT-immunoreactive (5-HT+) axons was estimated with stereology. Images of the striatum in the immunostained sections were taken to compare the distribution patterns of the serotonergic innervation between groups. These patterns were apparently similar among the groups. Axonal density estimations showed no differences in striatal 5-HT+ innervation between the intoxicated groups and the control group. Accordingly, this study fails to find significant changes in the striatal serotonergic axonal innervation in MPTP-treated monkeys, coinciding with previous biochemical findings in our model. However, it is possible that alterations in the serotonergic system in PD could be independent of axonal density changes. Consequently, the proposed role for striatal serotonin serving as a compensatory mechanism for dopaminergic denervation merits further study. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Subject(s)
Corpus Striatum/metabolism , Parkinsonian Disorders/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Administration, Intravenous , Animals , Corpus Striatum/chemistry , Corpus Striatum/pathology , Macaca fascicularis , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Primates , Serotonergic Neurons/chemistry , Serotonergic Neurons/pathology
15.
Mov Disord ; 35(3): 419-430, 2020 03.
Article in English | MEDLINE | ID: mdl-31800134

ABSTRACT

BACKGROUND: Dopamine loss beyond the mesostriatal system might be relevant in pathogenic mechanisms and some clinical manifestations in PD. The primate thalamus is densely and heterogeneously innervated with dopaminergic axons, most of which express the dopamine transporter, as does the nigrostriatal system. We hypothesized that dopamine depletion may be present in the thalamus of the parkinsonian brain and set out to ascertain possible regional differences. METHODS: The toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was administered to adult macaque monkeys using a slow intoxication protocol. The treated macaques were classified into 2 groups according to their motor status: nonsymptomatic and parkinsonian. Dopamine innervation was studied with immunohistochemistry for the dopamine transporter. Topographic maps of the dopamine transporter-immunoreactive axon distribution were generated and the total length and length density of these axons stereologically estimated using a 3-dimensional fractionator. RESULTS: Parkinsonian macaques exhibited lower dopamine transporter-immunoreactive axon length density than controls in mediodorsal and centromedian-parafascicular nuclei. Dopamine denervation in the mediodorsal nucleus was already noticeable in nonsymptomatic macaques and was even greater in parkinsonian macaques. Reticular nucleus dopamine transporter-immunoreactive axon length density presented an inverse pattern, increasing progressively to the maximum density seen in parkinsonian macaques. No changes were observed in ventral thalamic nuclei. Dopamine transporter-immunoreactive axon maps supported the quantitative findings. CONCLUSIONS: Changes in the dopamine innervation of various thalamic nuclei are heterogeneous and start in the premotor parkinsonian stage. These changes may be involved in some poorly understood nonmotor manifestations of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dopamine , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Axons , Haplorhini , Thalamic Nuclei
16.
Mol Ther ; 27(12): 2111-2122, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31501034

ABSTRACT

The development of new therapies to slow down or halt the progression of Parkinson's disease is a health care priority. A key pathological feature is the presence of alpha-synuclein aggregates, and there is increasing evidence that alpha-synuclein propagation plays a central role in disease progression. Consequently, the downregulation of alpha-synuclein is a potential therapeutic target. As a chronic disease, the ideal treatment will be minimally invasive and effective in the long-term. Knockdown of gene expression has clear potential, and siRNAs specific to alpha-synuclein have been designed; however, the efficacy of siRNA treatment is limited by its short-term efficacy. To combat this, we designed shRNA minicircles (shRNA-MCs), with the potential for prolonged effectiveness, and used RVG-exosomes as the vehicle for specific delivery into the brain. We optimized this system using transgenic mice expressing GFP and demonstrated its ability to downregulate GFP protein expression in the brain for up to 6 weeks. RVG-exosomes were used to deliver anti-alpha-synuclein shRNA-MC therapy to the alpha-synuclein preformed-fibril-induced model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved the clinical symptoms. Our results confirm the therapeutic potential of shRNA-MCs delivered by RVG-exosomes for long-term treatment of neurodegenerative diseases.


Subject(s)
Brain/metabolism , Disease Models, Animal , Drug Delivery Systems , Exosomes/genetics , Parkinson Disease/therapy , RNA, Small Interfering/genetics , alpha-Synuclein/administration & dosage , Animals , Gene Expression Regulation , Genetic Therapy , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics
17.
Mov Disord ; 34(9): 1262-1273, 2019 09.
Article in English | MEDLINE | ID: mdl-31412430

ABSTRACT

A major unmet need in Parkinson's disease (PD) is to slow the inexorable progression of neurodegeneration. Clinical trials that evaluated promising pharmacological strategies have repeatedly failed. Nonetheless, the advent of focused ultrasound provides new opportunities toward the goal of developing a safe and effective disease-modifying therapy for PD. Here we discuss the rationale, possible avenues, and challenges along this path, exploiting the potential of focused ultrasound for (1) performing focal thermal lesions to restore the basic basal ganglia abnormalities associated with dopamine depletion, and (2) transiently opening the blood-brain barrier for targeted delivery of therapeutic agents. First, the classic idea of excitotoxicity mediated by hyperactivity of the subthalamic nucleus suggests that focused ultrasound subthalamotomy may offer a clinically viable disease-modifying therapy in very-early PD. Second, the concept of retrograde nigrostriatal neurodegeneration, supported by our recent cortical pathogenic theory of PD, points toward the putamen as a principal site for focused ultrasound blood-brain barrier opening and targeted drug delivery. In principle, both therapeutic strategies-subthalamotomy and putaminal blood-brain barrier opening-could eventually be applied in the same patient. Clinical application is still a long road ahead; nevertheless, focused ultrasound may open a twofold path toward disease modification in PD. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Extracorporeal Shockwave Therapy/methods , Parkinson Disease/therapy , Animals , Blood-Brain Barrier/radiation effects , Disease Progression , Dopamine/metabolism , Drug Delivery Systems , Humans , Subthalamic Nucleus/surgery
18.
Mov Disord ; 34(9): 1252-1261, 2019 09.
Article in English | MEDLINE | ID: mdl-31361356

ABSTRACT

Parkinson's disease has many symptomatic treatments, but there is no neuroprotective therapy currently available. The evolution of this disease is inexorably progressive, and halting or stopping the neurodegenerative process is a major unmet need. Parkinson's disease motor features at onset are typically limited to 1 body segment, that is, focal signs, and the nigrostriatal degeneration is highly asymmetrical and mainly present in the caudal putamen. Thus, clinically and neurobiologically the process is fairly limited early in its evolution. Tentatively, this would allow the possibility of intervening to halt neurodegeneration at the most vulnerable site. The recent use of new technologies such as focused ultrasound provides interesting prospects. In particular, the possibility of transiently opening the blood-brain barrier to facilitate penetrance of putative neuroprotective agents is a highly attractive approach that could be readily applied to Parkinson's disease. However, because there are currently effective treatments available (ie, dopaminergic pharmacological therapy), more experimental evidence is needed to construct a feasible and practical therapeutic approach to be tested early in the evolution of Parkinson's disease patients. In this review, we provide the current evidence for the application of blood-brain barrier opening in experimental models of Parkinson's disease and discuss its potential clinical applicability. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Blood-Brain Barrier/radiation effects , Extracorporeal Shockwave Therapy/methods , Parkinson Disease/therapy , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/therapeutic use , Humans , Ultrasonics
20.
Expert Opin Drug Discov ; 13(3): 229-239, 2018 03.
Article in English | MEDLINE | ID: mdl-29363335

ABSTRACT

INTRODUCTION: Parkinson's disease is a progressive neurodegenerative disease that affects millions of elderly individuals worldwide. Despite intensive efforts dedicated to find a better treatment, the pathogenesis of Parkinson's Disease remains unknown. In search for a better therapy for the disease, several new in vivo and in vitro models of Parkinson´s disease have been developed in recent times. Areas covered: The authors provide an outline of the various traditional models of Parkinson´s disease and address those that have been recently generated. They also discuss the utility of these models for the identification of drugs of potential therapeutic value for Parkinson´s Disease patients. From the cell based models and the well-known toxin-based animal models, to the recent genetic models and the increasingly used non-mammalian models, every model is worthwhile in the search for a better Parkinson´s Disease therapy. Expert opinion: Almost 60 years after its discovery, levodopa is still the gold standard treatment for Parkinson's Disease patients. It seems unlikely that a single model can fully recapitulate the complexity of Parkinson's Disease in the same way it appears improbable that a unique treatment could relieve both the motor and non-motor symptoms of Parkinson's Disease altogether. Therefore treatment will probably require a combination of therapies.


Subject(s)
Antiparkinson Agents/pharmacology , Drug Discovery/methods , Parkinson Disease/drug therapy , Aged , Animals , Disease Models, Animal , Drug Design , Humans , Levodopa/pharmacology , Models, Biological , Parkinson Disease/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...