Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cogn Neurosci ; 67: 101387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692007

ABSTRACT

Infant attachment is an antecedent of later socioemotional abilities, which can be adversely affected by preterm birth. The structural integrity of amygdalae and hippocampi may subserve attachment in infancy. We aimed to investigate associations between neonatal amygdalae and hippocampi structure and their whole-brain connections and attachment behaviours at nine months of age in a sample of infants enriched for preterm birth. In 133 neonates (median gestational age 32 weeks, range 22.14-42.14), we calculated measures of amygdala and hippocampal structure (volume, fractional anisotropy, mean diffusivity, neurite dispersion index, orientation dispersion index) and structural connectivity, and coded attachment behaviours (distress, fretfulness, attentiveness to caregiver) from responses to the Still-Face Paradigm at nine months. After multiple comparisons correction, there were no significant associations between neonatal amygdala or hippocampal structure and structural connectivity and attachment behaviours: standardised ß values - 0.23 to 0.18, adjusted p-values > 0.40. Findings indicate that the neural basis of infant attachment in term and preterm infants is not contingent on the structure or connectivity of the amygdalae and hippocampi in the neonatal period, which implies that it is more widely distributed in early life and or that network specialisation takes place in the months after hospital discharge.


Subject(s)
Amygdala , Hippocampus , Object Attachment , Humans , Amygdala/diagnostic imaging , Male , Female , Infant, Newborn , Infant , Neural Pathways , Infant, Premature , Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Infant Behavior/physiology
2.
JAMA Netw Open ; 6(5): e2316067, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37256618

ABSTRACT

Importance: Preterm birth and socioeconomic status (SES) are associated with brain structure in childhood, but the relative contributions of each during the neonatal period are unknown. Objective: To investigate associations of birth gestational age (GA) and SES with neonatal brain morphology by testing 3 hypotheses: GA and SES are associated with brain morphology; associations between SES and brain morphology vary with GA; and associations between SES and brain structure and morphology depend on how SES is operationalized. Design, Setting, and Participants: This cohort study recruited participants from November 2016 to September 2021 at a single center in the United Kingdom. Participants were 170 extremely and very preterm infants and 91 full-term or near-term infants. Exclusion criteria were major congenital malformation, chromosomal abnormality, congenital infection, cystic periventricular leukomalacia, hemorrhagic parenchymal infarction, and posthemorrhagic ventricular dilatation. Exposures: Birth GA and SES, operationalized at the neighborhood level (using the Scottish Index of Multiple Deprivation), the family level (using parental education and occupation), and subjectively (World Health Organization Quality of Life measure). Main Outcomes and Measures: Brain volume (85 parcels) and 5 whole-brain cortical morphology measures (gyrification index, thickness, sulcal depth, curvature, surface area) at term-equivalent age (median [range] age, 40 weeks, 5 days [36 weeks, 2 days to 45 weeks, 6 days] and 42 weeks [38 weeks, 2 days to 46 weeks, 1 day] for preterm and full-term infants, respectively). Results: Participants were 170 extremely and very preterm infants (95 [55.9%] male; 4 of 166 [2.4%] Asian, 145 of 166 [87.3%] White) and 91 full-term or near-term infants (50 [54.9%] male; 3 of 86 [3.5%] Asian, 78 of 86 [90.7%] White infants) with median (range) birth GAs of 30 weeks, 0 days (22 weeks, 1 day, to 32 weeks, 6 days) and 39 weeks, 4 days (36 weeks, 3 days, to 42 weeks, 1 day), respectively. In fully adjusted models, birth GA was associated with a higher proportion of brain volumes (27 of 85 parcels [31.8%]; ß range, -0.20 to 0.24) than neighborhood-level SES (1 of 85 parcels [1.2%]; ß = 0.17 [95% CI, -0.16 to 0.50]) or family-level SES (maternal education: 4 of 85 parcels [4.7%]; ß range, 0.09 to 0.15; maternal occupation: 1 of 85 parcels [1.2%]; ß = 0.06 [95% CI, 0.02 to 0.11] respectively). There were interactions between GA and both family-level and subjective SES measures on regional brain volumes. Birth GA was associated with cortical surface area (ß = 0.10 [95% CI, 0.02 to 0.18]) and gyrification index (ß = 0.16 [95% CI, 0.07 to 0.25]); no SES measure was associated with cortical measures. Conclusions and Relevance: In this cohort study of UK infants, birth GA and SES were associated with neonatal brain morphology, but low GA had more widely distributed associations with neonatal brain structure than SES. Further work is warranted to elucidate the mechanisms underlying the association of both GA and SES with early brain development.


Subject(s)
Infant, Premature, Diseases , Premature Birth , Infant , Female , Infant, Newborn , Humans , Male , Infant, Premature , Premature Birth/epidemiology , Cohort Studies , Quality of Life , Brain/diagnostic imaging , Social Class
3.
Neuroimage ; 254: 119169, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35367650

ABSTRACT

Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests that despite global covariance of dMRI metrics in neonates, each metric represents information about specific (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.


Subject(s)
Premature Birth , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Neurites , Pregnancy , White Matter/diagnostic imaging
4.
Front Neuroinform ; 11: 1, 2017.
Article in English | MEDLINE | ID: mdl-28154532

ABSTRACT

Brain MRI atlases may be used to characterize brain structural changes across the life course. Atlases have important applications in research, e.g., as registration and segmentation targets to underpin image analysis in population imaging studies, and potentially in future in clinical practice, e.g., as templates for identifying brain structural changes out with normal limits, and increasingly for use in surgical planning. However, there are several caveats and limitations which must be considered before successfully applying brain MRI atlases to research and clinical problems. For example, the influential Talairach and Tournoux atlas was derived from a single fixed cadaveric brain from an elderly female with limited clinical information, yet is the basis of many modern atlases and is often used to report locations of functional activation. We systematically review currently available whole brain structural MRI atlases with particular reference to the implications for population imaging through to emerging clinical practice. We found 66 whole brain structural MRI atlases world-wide. The vast majority were based on T1, T2, and/or proton density (PD) structural sequences, had been derived using parametric statistics (inappropriate for brain volume distributions), had limited supporting clinical or cognitive data, and included few younger (>5 and <18 years) or older (>60 years) subjects. To successfully characterize brain structural features and their changes across different stages of life, we conclude that whole brain structural MRI atlases should include: more subjects at the upper and lower extremes of age; additional structural sequences, including fluid attenuation inversion recovery (FLAIR) and T2* sequences; a range of appropriate statistics, e.g., rank-based or non-parametric; and detailed cognitive and clinical profiles of the included subjects in order to increase the relevance and utility of these atlases.

SELECTION OF CITATIONS
SEARCH DETAIL
...