Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Comput Methods Biomech Biomed Engin ; 25(7): 821-831, 2022 May.
Article in English | MEDLINE | ID: mdl-34587827

ABSTRACT

Surface topography systems enable the capture of spinal dynamic movement; however, it is unclear whether vertebral dynamics are unique enough to identify individuals. Therefore, in this study, we investigated whether the identification of individuals is possible based on dynamic spinal data. Three different data representations were compared (automated extracted features using contrastive loss and triplet loss functions, as well as simple descriptive statistics). High accuracies indicated the possible existence of a personal spinal 'fingerprint', therefore enabling subject recognition. The present work forms the basis for an objective comparison of subjects and the transfer of the method to clinical use cases.


Subject(s)
Machine Learning , Neural Networks, Computer , Humans , Motion , Movement , Spine/diagnostic imaging
2.
Clin Biomech (Bristol, Avon) ; 89: 105452, 2021 10.
Article in English | MEDLINE | ID: mdl-34481198

ABSTRACT

BACKGROUND: Machine learning approaches for the classification of pathological gait based on kinematic data, e.g. derived from inertial sensors, are commonly used in terms of a multi-class classification problem. However, there is a lack of research regarding one-class classifiers that are independent of certain pathologies. Therefore, it was the aim of this work to design a one-class classifier based on healthy norm-data that provides not only a prediction probability but rather an explanation of the classification decision, increasing the acceptance of this machine learning approach. METHODS: The inertial sensor based gait kinematics of 25 healthy subjects was employed to train a one-class support vector machine. 25 healthy subjects, 20 patients after total hip arthroplasty and one transfemoral amputee served to validate the classifier. Prediction probabilities and feature importance scores were estimated for each subject. FINDINGS: The support vector machine predicted 100% of the patients as outliers from the healthy group. Three healthy subjects were predicted as outliers. The feature importance calculation revealed the hip in the sagittal plane as most relevant feature concerning the group after total hip arthroplasty. For the misclassified healthy subject with the lowest probability score the knee flexion and the pelvis obliquity were identified. INTERPRETATION: The support vector machine seems a useful tool to identify outliers from a healthy norm-group. The feature importance examination proved to provide valuable information on the musculoskeletal status of the subjects. In this combination, the present approach could be employed in various disciplines to identify abnormal gait and suggest subsequent training.


Subject(s)
Arthroplasty, Replacement, Hip , Support Vector Machine , Biomechanical Phenomena , Gait , Humans , Machine Learning
3.
Sensors (Basel) ; 21(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577530

ABSTRACT

Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Platt's method. Interpretation was performed using the explainable artificial intelligence tool Local Interpretable Model-Agnostic Explanations. The results were compared with those obtained by commonly used binary classification approaches. The best classification results were obtained for subjects with a spinal fusion. Subjects with back pain were especially challenging to distinguish from the healthy reference group. The proposed method proved useful for the interpretation of the predictions. No clear inferiority of the proposed approach compared to commonly used binary classifiers was demonstrated. The application of dynamic spinal data seems important for future works. The proposed approach could be useful to provide an objective orientation and to individually adapt and monitor therapy measures pre- and post-operatively.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Posture , Support Vector Machine
4.
Comput Methods Biomech Biomed Engin ; 24(3): 299-307, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33135504

ABSTRACT

Modern technologies enable to capture multiple biomechanical parameters often resulting in relational data. The current work proposes a generally applicable method comprising automated feature extraction, ensemble feature selection and classification to best capture the potentials of the data also for generating new biomechanical knowledge. Its benefits are demonstrated in the concrete biomechanically and medically relevant use case of gender classification based on spinal data for stance and gait. Very good results for accuracy were obtained using gait data. Dynamic movements of the lumbar spine in sagittal and frontal plane and of the pelvis in frontal plane best map gender differences.


Subject(s)
Algorithms , Gait/physiology , Knowledge Discovery , Posture/physiology , Sex Characteristics , Automation , Biomechanical Phenomena , Female , Humans , Male , Reproducibility of Results
5.
Sensors (Basel) ; 20(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049916

ABSTRACT

Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation.


Subject(s)
Biomechanical Phenomena , Foot , Gait , Walking , Humans , Mechanical Phenomena
6.
Sensors (Basel) ; 20(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781583

ABSTRACT

Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model's accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait patterns.


Subject(s)
Arthroplasty, Replacement, Hip , Artificial Intelligence , Gait , Biomechanical Phenomena , Humans , Knee Joint , Machine Learning
7.
JMIR Form Res ; 4(5): e13170, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32452803

ABSTRACT

BACKGROUND: The use of health apps to support the treatment of chronic pain is gaining importance. Most available pain management apps are still lacking in content quality and quantity as their developers neither involve health experts to ensure target group suitability nor use gamification to engage and motivate the user. To close this gap, we aimed to develop a gamified pain management app, Pain-Mentor. OBJECTIVE: To determine whether medical professionals would approve of Pain-Mentor's concept and content, this study aimed to evaluate the quality of the app's first prototype with experts from the field of chronic pain management and to discover necessary improvements. METHODS: A total of 11 health professionals with a background in chronic pain treatment and 2 mobile health experts participated in this study. Each expert first received a detailed presentation of the app. Afterward, they tested Pain-Mentor and then rated its quality using the mobile application rating scale (MARS) in a semistructured interview. RESULTS: The experts found the app to be of excellent general (mean 4.54, SD 0.55) and subjective quality (mean 4.57, SD 0.43). The app-specific section was rated as good (mean 4.38, SD 0.75). Overall, the experts approved of the app's content, namely, pain and stress management techniques, behavior change techniques, and gamification. They believed that the use of gamification in Pain-Mentor positively influences the patients' motivation and engagement and thus has the potential to promote the learning of pain management techniques. Moreover, applying the MARS in a semistructured interview provided in-depth insight into the ratings and concrete suggestions for improvement. CONCLUSIONS: The experts rated Pain-Mentor to be of excellent quality. It can be concluded that experts perceived the use of gamification in this pain management app in a positive manner. This showed that combining pain management with gamification did not negatively affect the app's integrity. This study was therefore a promising first step in the development of Pain-Mentor.

8.
Comput Methods Biomech Biomed Engin ; 23(1): 12-22, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31729264

ABSTRACT

Systems for instrumented motion analysis depend on an accurate biomechanical model. In this work an existing statistical shape fitting approach was adapted to register a parametrized human surface model with annotated anatomical landmarks to a point cloud obtained from one frontal depth camera view. Based on the obtained landmark positions joint centers, segment lengths and segment orientations of the lower body were calculated. The outcome was validated among two groups of healthy and impaired subjects, using a marker-based optical motion capture system. The results reveal a valid and reliable approach for obtaining an individualized lower body biomechanical model with minimum effort.


Subject(s)
Lower Extremity/physiology , Models, Biological , Photography/instrumentation , Statistics as Topic , Adult , Algorithms , Anatomic Landmarks , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Reproducibility of Results , Young Adult
9.
Sensors (Basel) ; 19(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744141

ABSTRACT

Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA.


Subject(s)
Arthroplasty, Replacement, Hip/rehabilitation , Biomechanical Phenomena/physiology , Gait/physiology , Monitoring, Physiologic , Wearable Electronic Devices , Algorithms , Female , Humans , Machine Learning , Male , Support Vector Machine
10.
JMIR Mhealth Uhealth ; 7(9): e13703, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31573919

ABSTRACT

BACKGROUND: Deep and slow abdominal breathing is an important skill for the management of stress and pain. However, despite multiple proofs on the effectiveness of biofeedback, most breathing apps remain limited to pacing specific breathing patterns, without sensor feedback on the actual breathing behavior. OBJECTIVE: To fill this gap, an app named Breathing-Mentor was developed. This app combines effective visualization of the instruction with biofeedback on deep abdominal breathing, based on the mobile phone's accelerometers. The aim of this pilot study was to investigate users' feedback and breathing behavior during initial contact with the app. METHODS: To reveal the possible effects of biofeedback, two versions of the mobile app were developed. Both contained the same visual instruction, but only the full version included additional biofeedback. In total, 40 untrained participants were randomly assigned to one of the two versions of the app. They had to follow the app's instructions as closely as possible for 5 min. RESULTS: The group with additional biofeedback showed an increased signal-to-noise ratio for instructed breathing frequency (0.1 Hz) compared with those using visual instruction without biofeedback (F1,37=4.18; P<.048). During this initial contact with the full version, self-reported relaxation effectivity was, however, lower than the group using visual instruction without biofeedback (t37=-2.36; P=.02), probably owing to increased cognitive workload to follow the instruction. CONCLUSIONS: This study supports the feasibility and usefulness of incorporating biofeedback in the Breathing-Mentor app to train abdominal breathing. Immediate effects on relaxation levels should, however, not be expected for untrained users.


Subject(s)
Biofeedback, Psychology/instrumentation , Breathing Exercises/standards , Mobile Applications/trends , Adult , Biofeedback, Psychology/methods , Breathing Exercises/methods , Female , Humans , Male , Mobile Applications/statistics & numerical data , Pilot Projects , Relaxation/psychology
11.
PLoS One ; 14(2): e0213064, 2019.
Article in English | MEDLINE | ID: mdl-30817787

ABSTRACT

3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°- 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°- 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings.


Subject(s)
Joints/physiology , Physical Therapy Modalities , Sports/physiology , Adult , Algorithms , Biomechanical Phenomena , Female , Fiducial Markers , Humans , Imaging, Three-Dimensional , Joints/anatomy & histology , Male , Models, Biological , Movement , Physical Therapy Modalities/statistics & numerical data , Range of Motion, Articular , Sports Medicine/statistics & numerical data , Young Adult
12.
Sensors (Basel) ; 19(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583508

ABSTRACT

The aim of this study was to assess the validity and test-retest reliability of an inertial measurement unit (IMU) system for gait analysis. Twenty-four healthy subjects conducted a 6-min walking test and were instrumented with seven IMUs and retroreflective markers. A kinematic approach was used to estimate the initial and terminal contact events in real-time. Based on these events twelve spatio-temporal parameters (STP) were calculated. A marker based optical motion capture (OMC) system provided the reference. Event-detection rate was about 99%. Detection offset was below 0.017 s. Relative root mean square error (RMSE) ranged from 0.90% to 4.40% for most parameters. However, the parameters that require spatial information of both feet showed higher errors. Step length showed a relative RMSE of 6.69%. Step width and swing width revealed the highest relative RMSE (34.34% and 35.20%). Test-retest results ranged from 0.67 to 0.92, except for the step width (0.25). Summarizing, it appears that the parameters describing the lateral distance between the feet need further improvement. However, the results of the validity and reliability of the IMU system encourage its validation in clinical settings as well as further research.

13.
Sensors (Basel) ; 18(7)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29933568

ABSTRACT

The present study investigates an algorithm for the calculation of 3D joint angles based on inertial measurement units (IMUs), omitting magnetometer data. Validity, test-retest reliability, and long-term stability are evaluated in reference to an optical motion capture (OMC) system. Twenty-eight healthy subjects performed a 6 min walk test. Three-dimensional joint kinematics of the lower extremity was recorded simultaneously by means of seven IMUs and an OptiTrack OMC system. To evaluate the performance, the root mean squared error (RMSE), mean range of motion error (ROME), coefficient of multiple correlations (CMC), Bland-Altman (BA) analysis, and intraclass correlation coefficient (ICC) were calculated. For all joints, the RMSE was lower than 2.40°, and the ROME was lower than 1.60°. The CMC revealed good to excellent waveform similarity. Reliability was moderate to excellent with ICC values of 0.52⁻0.99 for all joints. Error measures did not increase over time. When considering soft tissue artefacts, RMSE and ROME increased by an average of 2.2° ± 1.5° and 2.9° ± 1.7°. This study revealed an excellent correspondence of a magnetometer-free IMU system with an OMC system when excluding soft tissue artefacts.

14.
Sensors (Basel) ; 18(1)2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29351262

ABSTRACT

Human body motion analysis based on wearable inertial measurement units (IMUs) receives a lot of attention from both the research community and the and industrial community. This is due to the significant role in, for instance, mobile health systems, sports and human computer interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand crafted features and shallow classification approaches (e.g., support vector machines), with no agreement regarding the most suitable features for the assignment task. Moreover, estimating the complete orientation alignment of an IMU relative to the segment it is attached to using a machine learning approach has not been shown in literature so far. This is likely due to the high amount of training data that have to be recorded to suitably represent possible IMU alignment variations. In this work, we propose online approaches for solving the assignment and alignment tasks for an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep learning architecture and windows of 128 gyroscope and accelerometer data samples. For this, we combine convolutional neural networks (CNNs) for local filter learning with long-short-term memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time dynamic features. The assignment task is casted as a classification problem, while the alignment task is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting a limited amount of real IMU training data with simulated alignment variations and IMU data for improving the recognition/estimation accuracies. With the proposed approaches and final models we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when excluding left/right switches) and an average median angle error over all segments and axes of 2 . 91 for the I2S alignment task.


Subject(s)
Machine Learning , Biomechanical Phenomena , Humans , Motion , Neural Networks, Computer
15.
JMIR Serious Games ; 5(2): e13, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28592397

ABSTRACT

BACKGROUND: In today's society, stress is more and more often a cause of disease. This makes stress management an important target of behavior change programs. Gamification has been suggested as one way to support health behavior change. However, it remains unclear to which extend available gamification techniques are integrated in stress management apps, and if their occurrence is linked to the use of elements from behavior change theory. OBJECTIVE: The aim of this study was to investigate the use of gamification techniques in stress management apps and the cooccurrence of these techniques with evidence-based stress management methods and behavior change techniques. METHODS: A total of 62 stress management apps from the Google Play Store were reviewed on their inclusion of 17 gamification techniques, 15 stress management methods, and 26 behavior change techniques. For this purpose, an extended taxonomy of gamification techniques was constructed and applied by 2 trained, independent raters. RESULTS: Interrater-reliability was high, with agreement coefficient (AC)=.97. Results show an average of 0.5 gamification techniques for the tested apps and reveal no correlations between the use of gamification techniques and behavior change techniques (r=.17, P=.20), or stress management methods (r=.14, P=.26). CONCLUSIONS: This leads to the conclusion that designers of stress management apps do not use gamification techniques to influence the user's behaviors and reactions. Moreover, app designers do not exploit the potential of combining gamification techniques with behavior change theory.

16.
Sensors (Basel) ; 17(6)2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28587178

ABSTRACT

Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error).


Subject(s)
Motion , Biomechanical Phenomena , Humans , Surveys and Questionnaires , Upper Extremity
17.
JMIR Mhealth Uhealth ; 5(2): e22, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28232299

ABSTRACT

BACKGROUND: Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. OBJECTIVE: The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. METHODS: Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. RESULTS: The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). CONCLUSIONS: The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types.

18.
Sensors (Basel) ; 16(7)2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27455266

ABSTRACT

In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments-the IMU-to-segment calibrations, subsequently called I2S calibrations-to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity.


Subject(s)
Biomechanical Phenomena/physiology , Biosensing Techniques/methods , Acceleration , Algorithms , Calibration , Equipment Design , Humans , Motion , Movement/physiology
19.
PLoS One ; 10(6): e0127769, 2015.
Article in English | MEDLINE | ID: mdl-26126116

ABSTRACT

Today, the workflows that are involved in industrial assembly and production activities are becoming increasingly complex. To efficiently and safely perform these workflows is demanding on the workers, in particular when it comes to infrequent or repetitive tasks. This burden on the workers can be eased by introducing smart assistance systems. This article presents a scalable concept and an integrated system demonstrator designed for this purpose. The basic idea is to learn workflows from observing multiple expert operators and then transfer the learnt workflow models to novice users. Being entirely learning-based, the proposed system can be applied to various tasks and domains. The above idea has been realized in a prototype, which combines components pushing the state of the art of hardware and software designed with interoperability in mind. The emphasis of this article is on the algorithms developed for the prototype: 1) fusion of inertial and visual sensor information from an on-body sensor network (BSN) to robustly track the user's pose in magnetically polluted environments; 2) learning-based computer vision algorithms to map the workspace, localize the sensor with respect to the workspace and capture objects, even as they are carried; 3) domain-independent and robust workflow recovery and monitoring algorithms based on spatiotemporal pairwise relations deduced from object and user movement with respect to the scene; and 4) context-sensitive augmented reality (AR) user feedback using a head-mounted display (HMD). A distinguishing key feature of the developed algorithms is that they all operate solely on data from the on-body sensor network and that no external instrumentation is needed. The feasibility of the chosen approach for the complete action-perception-feedback loop is demonstrated on three increasingly complex datasets representing manual industrial tasks. These limited size datasets indicate and highlight the potential of the chosen technology as a combined entity as well as point out limitations of the system.


Subject(s)
Algorithms , Occupational Health , Workflow , Cognition , Humans , Imaging, Three-Dimensional , Learning , Occupational Medicine , Systems Integration , User-Computer Interface
20.
Appl Ergon ; 44(4): 566-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23261177

ABSTRACT

This work presents a system that permits a real-time ergonomic assessment of manual tasks in an industrial environment. First, a biomechanical model of the upper body has been developed by using inertial sensors placed at different locations on the upper body. Based on this model, a computerized RULA ergonomic assessment was implemented to permit a global risk assessment of musculoskeletal disorders in real-time. Furthermore, local scores were calculated per segment, e.g. the neck region, and gave information on the local risks for musculoskeletal disorders. Visual information was fed back to the user by using a see-through head mounted display. Additional visual highlighting and auditory warnings were provided when some predefined thresholds were exceeded. In a user study (N = 12 participants) a group with the RULA feedback was compared to a control group. Results demonstrate that the real-time ergonomic feedback significantly decreased the outcome of both globally as well as locally hazardous RULA values that are associated with increased risk for musculoskeletal disorders. Task execution time did not differ between groups. The real-time ergonomic tool introduced in this study has the potential to considerably reduce the risk of musculoskeletal disorders in industrial settings. Implications for ergonomics in manufacturing and user feedback modalities are further discussed.


Subject(s)
Ergonomics/methods , Feedback , Industry , Musculoskeletal Diseases/prevention & control , Occupational Diseases/prevention & control , Adult , Data Display , Humans , Male , Statistics, Nonparametric , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...