Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20222022 06 23.
Article in English | MEDLINE | ID: mdl-35735230

ABSTRACT

Experimental tools and resources, such as animal models, cell lines, antibodies, genetic reagents and biobanks, are key ingredients in biomedical research. Investigators face multiple challenges when trying to understand the availability, applicability and accessibility of these tools. A major challenge is keeping up with current information about the numerous tools available for a particular research problem. A variety of disease-agnostic projects such as the Mouse Genome Informatics database and the Resource Identification Initiative curate a number of types of research tools. Here, we describe our efforts to build upon these resources to develop a disease-specific research tool resource for the neurofibromatosis (NF) research community. This resource, the NF Research Tools Database, is an open-access database that enables the exploration and discovery of information about NF type 1-relevant animal models, cell lines, antibodies, genetic reagents and biobanks. Users can search and explore tools, obtain detailed information about each tool as well as read and contribute their observations about the performance, reliability and characteristics of tools in the database. NF researchers will be able to use the NF Research Tools Database to promote, discover, share, reuse and characterize research tools, with the goal of advancing NF research. Database URL: https://tools.nf.synapse.org/.


Subject(s)
Biomedical Research , Neurofibromatoses , Animals , Databases, Factual , Mice , Reproducibility of Results
2.
Mol Cell Proteomics ; 10(9): M110.006353, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21632744

ABSTRACT

Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and analysis techniques identify significantly different sets of proteins, and that a comprehensive plasma proteome can be compiled only by combining data from many different experiments. Applying advanced computational methods developed for the analysis and integration of very large and diverse data sets generated by tandem MS measurements of tryptic peptides, we have now compiled a high-confidence human plasma proteome reference set with well over twice the identified proteins of previous high-confidence sets. It includes a hierarchy of protein identifications at different levels of redundancy following a clearly defined scheme, which we propose as a standard that can be applied to any proteomics data set to facilitate cross-proteome analyses. Further, to aid in development of blood-based diagnostics using techniques such as selected reaction monitoring, we provide a rough estimate of protein concentrations using spectral counting. We identified 20,433 distinct peptides, from which we inferred a highly nonredundant set of 1929 protein sequences at a false discovery rate of 1%. We have made this resource available via PeptideAtlas, a large, multiorganism, publicly accessible compendium of peptides identified in tandem MS experiments conducted by laboratories around the world.


Subject(s)
Biomarkers/blood , Blood Proteins , Peptides , Plasma/chemistry , Proteome/analysis , Proteomics/methods , Algorithms , Blood Proteins/analysis , Blood Proteins/chemistry , Blood Proteins/standards , Chromatography, Liquid , Databases, Protein , Humans , Mass Spectrometry , Peptides/blood , Peptides/chemistry , Peptides/standards , Proteome/chemistry , Reference Standards , Software , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...