Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328056

ABSTRACT

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, BiP, plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme FicD that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by downregulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis. Significance Statement: The chaperone BiP plays a key quality control role in the endoplasmic reticulum, the cellular location for the production, folding, and transport of secreted proteins. The enzyme FicD regulates BiP's activity through AMPylation and deAMPylation. Our study unveils the importance of FicD in regulating BiP and the unfolded protein response (UPR) during stress. We identify distinct BiP AMPylation signatures for different stressors, highlighting FicD's nuanced control. Deletion of FicD causes widespread gene expression changes, disrupts UPR signaling, alters stress recovery, and perturbs protein secretion in cells. These observations underscore the pivotal contribution of FicD for preserving secretory protein homeostasis. Our findings deepen the understanding of FicD's role in maintaining cellular resilience and open avenues for therapeutic strategies targeting UPR-associated diseases.

2.
Science ; 379(6636): 996-1003, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893255

ABSTRACT

Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.


Subject(s)
Carbohydrate Metabolism , L-Lactate Dehydrogenase , Metabolome , Humans , Fatty Acids/metabolism , L-Lactate Dehydrogenase/metabolism , Organ Specificity , Mass Spectrometry/methods , Allosteric Regulation
3.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914137

ABSTRACT

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Subject(s)
Cyclic AMP , Drosophila Proteins , Drosophila melanogaster , Endoplasmic Reticulum Stress , Nucleotidyltransferases , Stress, Physiological , Unfolded Protein Response , Animals , Mice , Alleles , Cyclic AMP/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Pancreas/drug effects , Pancreas/enzymology , Pancreas/metabolism , Pancreas/physiopathology , Stress, Physiological/drug effects , Unfolded Protein Response/drug effects
4.
Elife ; 102021 06 16.
Article in English | MEDLINE | ID: mdl-34132193

ABSTRACT

Our ability to rationally optimize allosteric regulation is limited by incomplete knowledge of the mutations that tune allostery. Are these mutations few or abundant, structurally localized or distributed? To examine this, we conducted saturation mutagenesis of a synthetic allosteric switch in which Dihydrofolate reductase (DHFR) is regulated by a blue-light sensitive LOV2 domain. Using a high-throughput assay wherein DHFR catalytic activity is coupled to E. coli growth, we assessed the impact of 1548 viable DHFR single mutations on allostery. Despite most mutations being deleterious to activity, fewer than 5% of mutations had a statistically significant influence on allostery. Most allostery disrupting mutations were proximal to the LOV2 insertion site. In contrast, allostery enhancing mutations were structurally distributed and enriched on the protein surface. Combining several allostery enhancing mutations yielded near-additive improvements to dynamic range. Our results indicate a path toward optimizing allosteric function through variation at surface sites.


Many proteins exhibit a property called 'allostery'. In allostery, an input signal at a specific site of a protein ­ such as a molecule binding, or the protein absorbing a photon of light ­ leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein 'remote control' allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a 'sensor' or input region from one protein with an 'output' region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is 'on' versus 'off' is often small, a situation called 'modest allostery'. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the 'on' and 'off' states. More specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the 'input' and 'output' domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the 'output' domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the 'input' domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the 'output' domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.'s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric 'switches' look like.


Subject(s)
Allosteric Regulation/genetics , Allosteric Site/genetics , Protein Binding/genetics , Computational Biology , Escherichia coli/genetics , Models, Molecular , Mutation/genetics , Protein Domains/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...