Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Genome Res ; 34(4): 556-571, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38719473

ABSTRACT

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.


Subject(s)
Euchromatin , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Methyltransferases , Repressor Proteins , Transcription, Genetic , Euchromatin/metabolism , Euchromatin/genetics , Histones/metabolism , Histones/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , Mice , Humans , Gene Expression Regulation , Cell Line
2.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557491

ABSTRACT

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Subject(s)
Abnormalities, Multiple , Acetylcarnitine , Congenital Hypothyroidism , Craniofacial Abnormalities , Histone Acetyltransferases , Intellectual Disability , Joint Instability , Animals , Humans , Mice , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Acetylation , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Blepharophimosis , Chromatin , Craniofacial Abnormalities/drug therapy , Craniofacial Abnormalities/genetics , Exons , Facies , Heart Defects, Congenital , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histones/genetics , Intellectual Disability/drug therapy , Intellectual Disability/genetics
4.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106143

ABSTRACT

Low nephron number correlates with the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development. Differences in the expression of genes involved in metabolism were identified in most cell types we analyzed, yielding imbalances and shifts in cellular energy production. We further demonstrate that LPD impedes branching morphogenesis and significantly reduces the number of pretubular aggregates - the initial precursors to nephron formation. The most striking observation was that LPD changes the developmental trajectory of nephron progenitor cells, driving the formation of a partially committed cell population which likely reflects a failure of cells to commit to nephron formation and which ultimately reduces endowment. This unique profile of a fetal programming defect demonstrates that low nephron endowment arises from the pleiotropic impact of changes in branching morphogenesis and nephron progenitor cell commitment, the latter of which highlights a critical role for nutrition in regulating the cell fate decisions underpinning nephron endowment. Significance Statement: While a mother's diet and behavior can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.

5.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37991053

ABSTRACT

In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Male , Animals , Female , X Chromosome Inactivation/genetics , RNA, Long Noncoding/genetics , X Chromosome/genetics , Chromatin/genetics , Dosage Compensation, Genetic , Mammals/genetics
6.
Immunol Cell Biol ; 101(10): 923-935, 2023.
Article in English | MEDLINE | ID: mdl-37721869

ABSTRACT

The emergence of large language models (LLMs) and assisted artificial intelligence (AI) technologies have revolutionized the way in which we interact with technology. A recent symposium at the Walter and Eliza Hall Institute explored the current practical applications of LLMs in medical research and canvassed the emerging ethical, legal and social implications for the use of AI-assisted technologies in the sciences. This paper provides an overview of the symposium's key themes and discussions delivered by diverse speakers, including early career researchers, group leaders, educators and policy-makers highlighting the opportunities and challenges that lie ahead for scientific researchers and educators as we continue to explore the potential of this cutting-edge and emerging technology.


Subject(s)
Artificial Intelligence , Biomedical Research , Technology
7.
Nat Commun ; 14(1): 5466, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749075

ABSTRACT

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Animals , Mice , Chromatin/genetics , Epigenomics , Gene Silencing , Genes, Homeobox , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomal Proteins, Non-Histone/genetics
8.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36355065

ABSTRACT

Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.


Subject(s)
Mouse Embryonic Stem Cells , X Chromosome Inactivation , Male , Animals , Female , Mice , Cell Differentiation/physiology , X Chromosome Inactivation/genetics , Karyotype
9.
Gastroenterology ; 163(6): 1643-1657.e14, 2022 12.
Article in English | MEDLINE | ID: mdl-36037995

ABSTRACT

BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.


Subject(s)
Necroptosis , Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Mice , Animals , Epigenesis, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Hepatocytes , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Protein Kinases/genetics
10.
Nat Commun ; 13(1): 4295, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879318

ABSTRACT

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Homeobox , Animals , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Mammalian/metabolism , Female , Gene Expression , Mice , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Pregnancy
11.
iScience ; 25(7): 104684, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35856023

ABSTRACT

SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females.

12.
Epigenetics Chromatin ; 15(1): 26, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35843975

ABSTRACT

Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.


Subject(s)
Chromosomal Proteins, Non-Histone , RNA, Long Noncoding , X Chromosome Inactivation , Animals , Blastocyst/physiology , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Development , Genomic Imprinting , Mice , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome
13.
Nat Commun ; 13(1): 1658, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351876

ABSTRACT

The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly.


Subject(s)
RNA, Long Noncoding , X Chromosome Inactivation , Animals , Chromatin/genetics , Dosage Compensation, Genetic , Epigenesis, Genetic , Female , Mice , RNA, Long Noncoding/genetics , X Chromosome/genetics , X Chromosome Inactivation/genetics
14.
PLoS Comput Biol ; 17(10): e1009524, 2021 10.
Article in English | MEDLINE | ID: mdl-34695109

ABSTRACT

A key benefit of long-read nanopore sequencing technology is the ability to detect modified DNA bases, such as 5-methylcytosine. The lack of R/Bioconductor tools for the effective visualization of nanopore methylation profiles between samples from different experimental groups led us to develop the NanoMethViz R package. Our software can handle methylation output generated from a range of different methylation callers and manages large datasets using a compressed data format. To fully explore the methylation patterns in a dataset, NanoMethViz allows plotting of data at various resolutions. At the sample-level, we use dimensionality reduction to look at the relationships between methylation profiles in an unsupervised way. We visualize methylation profiles of classes of features such as genes or CpG islands by scaling them to relative positions and aggregating their profiles. At the finest resolution, we visualize methylation patterns across individual reads along the genome using the spaghetti plot and heatmaps, allowing users to explore particular genes or genomic regions of interest. In summary, our software makes the handling of methylation signal more convenient, expands upon the visualization options for nanopore data and works seamlessly with existing methylation analysis tools available in the Bioconductor project. Our software is available at https://bioconductor.org/packages/NanoMethViz.


Subject(s)
DNA Methylation/genetics , Genomics/methods , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Software , Animals , Humans , Mice
15.
Neurobiol Stress ; 15: 100367, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34337114

ABSTRACT

Impaired extinction of conditioned fear is associated with anxiety disorders. Common lifestyle factors, like isolation stress and exercise, may alter the ability to extinguish fear. However, the effect of and interplay between these factors on adolescent fear extinction, and the relevant underlying neural mechanisms are unknown. Here we examined the effects of periadolescent social isolation and physical activity on adolescent fear extinction in rats and explored neurogenesis as a potential mechanism. Isolation stress impaired extinction recall in male adolescents, an effect prevented by exercise. Extinction recall in female adolescents was unaffected by isolation stress. However, exercise disrupted extinction recall in isolated females. Extinction recall in isolated females was positively correlated to the number of immature neurons in the ventral hippocampus, suggesting that exercise affected extinction recall via neurogenesis in females. Pharmacologically suppressing cellular proliferation in isolated adolescents using temozolomide blocked the effect of exercise on extinction recall in both sexes. Together, these findings highlight sex-specific outcomes of isolation stress and exercise on adolescent brain and behavior, and highlights neurogenesis as a potential mechanism underlying lifestyle effects on adolescent fear extinction.

16.
Development ; 148(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34121118

ABSTRACT

Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.


Subject(s)
Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Lung/embryology , SOX9 Transcription Factor/metabolism , Animals , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Organogenesis , SOX9 Transcription Factor/genetics
17.
Biochem J ; 478(13): 2555-2569, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34109974

ABSTRACT

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.


Subject(s)
Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Protein Multimerization , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , HEK293 Cells , Humans , Immunoblotting , Microscopy, Fluorescence , Mutation , Protein Binding , Protein Domains , Scattering, Small Angle , Substrate Specificity , Ubiquitin/chemistry , Ubiquitin/metabolism , X-Ray Diffraction
18.
NAR Genom Bioinform ; 3(2): lqab028, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33937765

ABSTRACT

Application of Oxford Nanopore Technologies' long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to the high sequence error and small library sizes, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore RNA-seq datasets with the goal of obtaining gene- and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs ('sequins') as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 was analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods for downstream analysis. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using long-read specific preprocessing methods together with short-read differential expression methods and software that are already in wide use can yield meaningful results.

19.
Elife ; 92020 12 02.
Article in English | MEDLINE | ID: mdl-33264090

ABSTRACT

The dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8+ T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells. Intriguingly, RNF41 regulates the downstream fate of Clec9A by directly binding and ubiquitinating the extracellular domains of Clec9A. At steady-state, RNF41 ubiquitination of Clec9A facilitates interactions with ER-associated proteins and degradation machinery to control Clec9A levels. However, Clec9A interactions are altered following dead cell uptake to favor antigen presentation. These findings provide important insights into antigen cross-presentation and have implications for development of approaches to modulate immune responses.


Subject(s)
Antigens/immunology , Dendritic Cells/physiology , Lectins, C-Type/metabolism , Receptors, Immunologic/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , CHO Cells , Cricetinae , Cricetulus , Gene Expression Regulation/physiology , Lectins, C-Type/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, Immunologic/genetics , Ubiquitin-Protein Ligases/genetics
20.
Elife ; 92020 11 13.
Article in English | MEDLINE | ID: mdl-33186096

ABSTRACT

Genomic imprinting establishes parental allele-biased expression of a suite of mammalian genes based on parent-of-origin specific epigenetic marks. These marks are under the control of maternal effect proteins supplied in the oocyte. Here we report epigenetic repressor Smchd1 as a novel maternal effect gene that regulates the imprinted expression of ten genes in mice. We also found zygotic SMCHD1 had a dose-dependent effect on the imprinted expression of seven genes. Together, zygotic and maternal SMCHD1 regulate three classic imprinted clusters and eight other genes, including non-canonical imprinted genes. Interestingly, the loss of maternal SMCHD1 does not alter germline DNA methylation imprints pre-implantation or later in gestation. Instead, what appears to unite most imprinted genes sensitive to SMCHD1 is their reliance on polycomb-mediated methylation as germline or secondary imprints, therefore we propose that SMCHD1 acts downstream of polycomb imprints to mediate its function.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Genomic Imprinting/genetics , Animals , Blastocyst , Chromosomal Proteins, Non-Histone/genetics , DNA Methylation , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental/physiology , Genotype , Green Fluorescent Proteins , Male , Mice , Neural Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...