Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 28821, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27353576

ABSTRACT

Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.


Subject(s)
Ammonia/metabolism , Anthozoa/metabolism , Eutrophication , Phosphates/metabolism , Water Pollutants, Chemical/metabolism , Ammonia/analysis , Animals , Coral Reefs , Curacao , Kinetics , Nitrogen/analysis , Nitrogen/metabolism , Phosphates/analysis , Phosphorus/analysis , Phosphorus/metabolism , Seawater/analysis , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 47(23): 13798-803, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24180581

ABSTRACT

Relatively hazardous brominated flame retardants (BFRs) are currently substituted with halogen-free flame retardants (HFFRs). Consequently, information on their persistence, bioaccumulation and toxicity (PBT) is urgently needed. Therefore, we investigated the chronic toxicity to the water flea Daphnia magna of two HFFRs, aluminum diethylphosphinate (ALPI) and 9,10-dihyro-9-oxa-10-phosphaphenanthrene-oxide (DOPO). The toxicity of ALPI increased from a 48 h LC50 of 18 mg L(-1) to a 21 day LC50 value of 3.2 mg L(-1), resulting in an acute-to-chronic ratio of 5.6. This may imply a change in classification from low to moderate toxicity. ALPI also affected sublethal life cycle parameters, with an EC50 of 2.8 mg L(-1) for cumulative reproductive output and of 3.4 mg L(-1) for population growth rate, revealing a nonspecific mode of action. DOPO showed only sublethal effects with an EC50 value of 48 mg L(-1) for cumulative reproductive output and an EC50 value of 73 mg L(-1) for population growth rate. The toxicity of DOPO to D. magna was classified as low and likely occurred above environmentally relevant concentrations, but we identified specific effects on reproduction. Given the low chronic toxicity of DOPO and the moderate toxicity of ALPI, based on this study only, DOPO seems to be more suitable than ALPI for BFR replacement in polymers.


Subject(s)
Daphnia/growth & development , Flame Retardants/toxicity , Life Cycle Stages/drug effects , Animals , Daphnia/drug effects , Population Dynamics , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...