Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 10(11): 4976-4985, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37622226

ABSTRACT

UV-curable 3D printing compositions for the fabrication of stretchable and flexible porous structures for soft robotics are presented. The stereolithography-based printing compositions are water-in-oil (W/O) emulsions in which water droplets are the pore-forming material, and the continuous phase is a stretchable polyurethane diacrylate (PUA). The porosity of the printed objects is controlled by the material's micro-porosity and by the macro-porosity obtained by a cellular design. The mechanical behavior can be tailored by the composition of the emulsion, providing both compliance and strength while utilizing a unique optimization methodology for fitting the ink to the 3D printer. This approach enables developing materials having superior mechanical properties, with the highest reported elongation-at-break for 3D printed porous structures, 450%. The emulsion-based printing compositions were utilized for fabricating a soft robotic gripper with unique actuation performance that could not be obtained with commonly used materials.

2.
Adv Sci (Weinh) ; 10(23): e2302080, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37323121

ABSTRACT

Although natural continuum structures, such as the boneless elephant trunk, provide inspiration for new versatile grippers, highly deformable, jointless, and multidimensional actuation has still not been achieved. The challenging pivotal requisites are to avoid sudden changes in stiffness, combined with the capability of providing reliable large deformations in different directions. This research addresses these two challenges by harnessing porosity at two levels: material and design. Based on the extraordinary extensibility and compressibility of volumetrically tessellated structures with microporous elastic polymer walls, monolithic soft actuators are fabricated by 3D printing unique polymerizable emulsions. The resulting monolithic pneumatic actuators are printed in a single process and are capable of bidirectional movements with just one actuation source. The proposed approach is demonstrated by two proof-of-concepts: a three-fingered gripper, and the first ever soft continuum actuator that encodes biaxial motion and bidirectional bending. The results open up new design paradigms for continuum soft robots with bioinspired behavior based on reliable and robust multidimensional motions.

SELECTION OF CITATIONS
SEARCH DETAIL
...