Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 41(20): 7152-8, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17993162

ABSTRACT

Diesel exhaust is a complex chemical mixture that has been linked to lung cancer mortality in a number of epidemiologic studies. However, the dose-response relationship remains largely undefined, and the specific components responsible for carcinogenicity have not been identified. Although previous focus has been on the particulate phase, diesel exhaust includes a vapor phase of numerous volatile organic compounds (VOCs) and aldehydes that are either known or suspected carcinogens, such as 1,3-butadiene, benzene, and formaldehyde. However, there are relatively few studies that quantify exposure to VOCs and aldehydes in diesel-heavy and other exhaust-related microenvironments. As part of a nationwide assessment of exposure to diesel exhaust in the trucking industry, we collected measurements of VOCs and aldehydes at 15 different U.S. trucking terminals and in city truck drivers (with 6 repeat site visits), observing average shift concentrations in truck cabs and at multiple background and work area locations within each terminal. In this paper, we characterize occupational exposure to 18 different VOCs and aldehydes, as well as relationships with particulate mass (elemental carbon in PM < 1 microm and PM2.5) across locations to determine source characteristics. Our results show that occupational exposure to VOCs and aldehydes varies significantly across the different sampling locations within each terminal, with significantly higher exposures noted in the work environments over background levels (p < 0.01). A structural equation model performed well in predicting terminal exposures to VOCs and aldehydes as a function of job, background levels, weather conditions, proximity to a major road, and geographic location (R2 = 0.2-0.4 work area; R2 = 0.5-0.9 background).


Subject(s)
Aldehydes/toxicity , Industry , Occupational Exposure , Organic Chemicals/toxicity , Transportation , Gas Chromatography-Mass Spectrometry , United States , Volatilization
2.
J Occup Environ Hyg ; 4(11): 848-54, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17885912

ABSTRACT

A large study of combustion particle exposures for drivers of diesel-powered trucks was conducted in collaboration with an epidemiologic study of lung cancer outcomes for workers in the trucking industry. Three components of diesel exhaust combustion particles (PM(2.5), elemental carbon, and organic carbon) were measured inside the driver cabs of diesel-powered trucks from 36 different trucking terminals across the United States between 2001 and 2005. In-cab particle exposures for drivers assigned to both short and long distance trips were observed, as well as information on the smoking status of the driver, truck characteristics such as age and model, and weather conditions during the sampling session. This article summarizes these findings and describes the relationship between exhaust particles and various determinants of exposure. The results suggest that in-cab particle exposures are positively related to smoking, ambient particle concentrations, truck age, and open windows, with other significant modifying factors such as weather. This study represents the largest and most comprehensive exposure assessment of drivers in the trucking industry, encompassing a 4-year period of observations on diesel and exhaust particle exposures nationwide. The results are relevant not only to the occupational group of truck drivers being examined but also to the general population that live, commute, or work within proximity to diesel-fueled traffic or trucking terminals.


Subject(s)
Air Pollutants, Occupational/toxicity , Gasoline/toxicity , Incineration , Motor Vehicles , Occupational Exposure , Vehicle Emissions/toxicity , Environmental Monitoring , Humans , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Particle Size , Particulate Matter/toxicity , Risk Assessment , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...