Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 70(7): 2221-2230, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35157803

ABSTRACT

The aim of this study was to characterize the effects of tannins on plant protein during sheep digestion using a digestomic approach combining in vivo (rumen) conditions and an in vitro digestive system (abomasum and small intestine). Ruminal fluid from wethers infused with a tannin solution or water (control) was introduced into the digester, and protein degradation was followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Tannin infusion in the rumen led to a clear decrease in protein degradation-related fermentation end-products, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) protein was more abundant than in control wethers. In the simulated abomasum, peptidomic analysis showed more degradation products of RuBisCo in the presence of tannins. The effect of RuBisCo protection by tannins continued to impact Rubisco digestion into early-stage intestinal digestion but was no longer detectable in late-stage intestinal digestion. The peptidomics approach proved a potent tool for identifying and quantifying the type of protein hydrolyzed throughout the gastrointestinal tract.


Subject(s)
Medicago sativa , Tannins , Animal Feed/analysis , Animals , Chromatography, Liquid , Dietary Supplements/analysis , Digestion , Fermentation , Medicago sativa/metabolism , Proteolysis , Rumen/metabolism , Sheep , Tandem Mass Spectrometry , Tannins/metabolism
2.
Foods ; 10(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34574340

ABSTRACT

Processed meats' nutritional quality may be enhanced by bioactive vegetable molecules, by preventing the synthesis of nitrosamines from N-nitrosation, and harmful aldehydes from lipid oxidation, through their reformulation. Both reactions occur during digestion. The precise effect of these molecules during processed meats' digestion must be deepened to wisely select the most efficient vegetable compounds. The aim of this study was to design an in vitro experimental method, allowing to foresee polyphenols and vitamins' effects on the chemical reactivity linked to processed meats' digestion. The method measured the modulation of end products formation (specific nitroso-tryptophan and thiobarbituric acid reactive substances (TBARS)), by differential UV-visible spectrophotometry, according to the presence or not of phenolic compounds (chlorogenic acid, rutin, naringin, naringenin) or vitamins (ascorbic acid and trolox). The reactional medium was supported by an oil in water emulsion mimicking the physico-chemical environment of the gastric compartment. The model was optimized to uphold the reactions in a stable and simplified model featuring processed meat composition. Rutin, chlorogenic acid, naringin, and naringenin significantly inhibited lipid oxidation. N-nitrosation was inhibited by the presence of lipids and ascorbate. This methodology paves the way for an accurate selection of molecules within the framework of processed meat products reformulation.

3.
Molecules ; 26(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207540

ABSTRACT

The marketing of poultry livers is only authorized as fresh, frozen, or deep-frozen. The higher consumer demand for these products for a short period of time may lead to the marketing of frozen-thawed poultry livers: this constitutes fraud. The aim of this study was to design a method for distinguishing frozen-thawed livers from fresh livers. For this, the spectral fingerprint of liver proteins was acquired using Matrix-Assisted Laser Dissociation Ionization-Time-Of-Flight mass spectrometry. The spectra were analyzed using the chemometrics approach. First, principal component analysis studied the expected variability of commercial conditions before and after freezing-thawing. Then, the discriminant power of spectral fingerprint of liver proteins was assessed using supervised model generation. The combined approach of mass spectrometry and chemometrics successfully described the evolution of protein profile during storage time, before and after freezing-thawing, and successfully discriminated the fresh and frozen-thawed livers. These results are promising in terms of fraud detection, providing an opportunity for implementation of a reference method for agencies to fight fraud.


Subject(s)
Fatty Liver/metabolism , Poultry Products/analysis , Proteome/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Ducks , Fatty Liver/classification , Freezing , Principal Component Analysis , Proteome/analysis , Quality Control
4.
J Agric Food Chem ; 57(22): 10755-64, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19860418

ABSTRACT

Within a population of Charolais young bulls, two extreme groups of longissimus thoracis muscle samples, classified according to Warner-Bratzler shear force (WBSF) of 55 degrees C grilled meat, were analyzed by 2D-electrophoresis. Muscle analyses were performed on 4 bulls of the "tender" group (WBSF=27.7+/-4.8 N) and 4 bulls of the "tough" group (WBSF=41.2+/-6.1 N), at 3 post-mortem times: D0, samples taken within 10 min post-mortem; D5 and D21, samples kept at 4 degrees C under vacuum during 5 and 21 days. Proteins of muscle samples were separated in two fractions based on protein solubility in Tris buffer: "soluble" and "insoluble". Proteins of both fractions were separated by 2D-electrophoresis. Evolution of spots during the 3 post-mortem times was analyzed by hierarchical classification (HCA). Three clusters of proteins presenting similar evolution profiles provided accurate classification of post-mortem times and showed the translocation of some chaperone proteins and glycolytic enzymes from the soluble fraction to the insoluble fraction between D0 and D5. Cellular structure dismantlement and proteolysis was observed at D21. Effect of group ("tender" vs "tough") on spot intensities was tested by ANOVA. At D0, higher quantity of proteins of the inner and outer membrane of mitochondria was found in the tender group suggesting a more extensive degradation of mitochondria that may be related to the apoptotic process.


Subject(s)
Apoptosis , Meat/analysis , Muscle Proteins/analysis , Muscle, Skeletal/chemistry , Animals , Cattle , Electrophoresis, Gel, Two-Dimensional , Food Technology , Male , Mitochondria/chemistry , Mitochondria/ultrastructure , Muscle, Skeletal/ultrastructure , Postmortem Changes , Shear Strength , Solubility , Time Factors
5.
J Agric Food Chem ; 57(11): 4913-23, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19449875

ABSTRACT

Bidimensional electrophoresis was used to compare sarcoplasmic protein profiles of early post-mortem pig semimembranosus muscles, sampled from pigs of different HAL genotypes (RYR1 mutation 1841T/C): 6 NN, 6 Nn, 6 nn. ANOVA showed that 55 (18%) of the total of 300 matched protein spots were influenced by genotype, and hierarchical clustering analysis identified 31 (10% of the matched proteins) additional proteins coregulated with these proteins. Fold-changes of differentially expressed proteins were between 1.3 and 21.8. Peptide mass fingerprinting identification of 78 of these 86 proteins indicates that faster pH decline of nn pigs was not explained by higher abundance of glycolytic enzymes. Results indicate further that nn muscles contained fewer proteins of the oxidative metabolic pathway, fewer antioxidants, and more protein fragments. Lower abundance of small heat shock proteins and myofibrillar proteins in nn muscles may at least partly be explained by the effect of pH on their extractability. Possible consequences of lower levels of antioxidants and repair capacities, increased protein fragmentation, and lower extractability of certain proteins in nn muscles on meat quality are discussed.


Subject(s)
Meat/analysis , Muscle, Skeletal/chemistry , Proteome/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Swine/genetics , Swine/metabolism , Animals , Electrophoresis, Gel, Two-Dimensional , Genotype , Male , Molecular Sequence Data , Molecular Weight , Muscle, Skeletal/metabolism , Proteome/genetics , Quality Control , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...