Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Comput Aided Mol Des ; 33(10): 913-926, 2019 10.
Article in English | MEDLINE | ID: mdl-31686367

ABSTRACT

Misfolded Cu/Zn superoxide dismutase enzyme (SOD1) shows prion-like propagation in neuronal cells leading to neurotoxic aggregates that are implicated in amyotrophic lateral sclerosis (ALS). Tryptophan-32 (W32) in SOD1 is part of a potential site for templated conversion of wild type SOD1. This W32 binding site is located on a convex, solvent exposed surface of the SOD1 suggesting that hydration effects can play an important role in ligand recognition and binding. A recent X-ray crystal structure has revealed that 5-Fluorouridine (5-FUrd) binds at the W32 binding site and can act as a pharmacophore scaffold for the development of anti-ALS drugs. In this study, a new protocol is developed to account for structural (non-displaceable) water molecules in docking simulations and successfully applied to predict the correct docked conformation binding modes of 5-FUrd at the W32 binding site. The docked configuration is within 0.58 Å (RMSD) of the observed configuration. The docking protocol involved calculating a hydration structure around SOD1 using molecular theory of solvation (3D-RISM-KH, 3D-Reference Interaction Site Model-Kovalenko-Hirata) whereby, non-displaceable water molecules are identified for docking simulations. This protocol was also used to analyze the hydrated structure of the W32 binding site and to explain the role of solvation in ligand recognition and binding to SOD1. Structural water molecules mediate hydrogen bonds between 5-FUrd and the receptor, and create an environment favoring optimal placement of 5-FUrd in the W32 binding site.


Subject(s)
Models, Theoretical , Molecular Docking Simulation , Molecular Dynamics Simulation , Superoxide Dismutase-1/metabolism , Uridine/analogs & derivatives , Water/chemistry , Binding Sites , Humans , Mutation , Protein Conformation , Quantum Theory , Solvents , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , Uridine/chemistry , Uridine/metabolism , Water/metabolism
2.
J Phys Chem B ; 123(11): 2491-2506, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30811210

ABSTRACT

Structural characterization of amyloid (A)ß peptides implicated in Alzheimer's disease is a challenging problem due to their intrinsically disordered nature and their high propensity for aggregation. Only limited information is currently available from experiments on conformational properties and aggregation pathways of the peptides in cellular environments. In silico modeling complements experimental information, providing atomistic insight into structure and dynamics of different Aß species. All-atom explicit solvent molecular dynamics (MD) simulations with a properly selected force field can deliver reliable structural and dynamic information. In the case of intrinsically disordered Aß peptides, enhanced sampling simulations beyond the nanosecond time scale are required to obtain statistically meaningful results even for simple solvent conditions. To overcome the challenges of conformational sampling in crowded cellular environments, alternative approaches have to be used, including postprocessing of MD data. In this study, we employ the statistical-mechanical, three-dimensional reference interaction site model with the Kovalenko-Hirata closure integral equation molecular theory of solvation to describe solvent composition effects on the conformational equilibrium in a structural ensemble of the Aß42 (covering residues 1-42) monomer based on a statistical reweighting technique. The methodology enables a computationally efficient prediction on how different factors in the cellular environment, such as solvent composition, nonpolar solvation, and macromolecular crowding, affect the structural properties of the monomer. Similarities have been identified between changes in the structural ensemble caused by nonpolar solvation and crowded environments modeled by ionic solution with large negative ions. In particular, both solvent conditions reduce the random coil content and enhance the helical structure content of the monomer. In contrast to the previous studies, which reported increased α-helical content of peptides in crowded environments, this work attributes these structural features to the difference in solvent exposure of hydrophilic residues of the monomer for different secondary structure elements, rather than to (entropic) excluded volume effects.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Solvents/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Ions/chemistry , Models, Chemical , Protein Structure, Secondary/drug effects , Solubility , Thermodynamics
3.
Neurobiol Dis ; 124: 297-310, 2019 04.
Article in English | MEDLINE | ID: mdl-30528257

ABSTRACT

SOD1 misfolding, toxic gain of function, and spread are proposed as a pathological basis of amyotrophic lateral sclerosis (ALS), but the nature of SOD1 toxicity has been difficult to elucidate. Uniquely in SOD1 proteins from humans and other primates, and rarely in other species, a tryptophan residue at position 32 (W32) is predicted to be solvent exposed and to participate in SOD1 misfolding. We hypothesized that W32 is influential in SOD1 acquiring toxicity, as it is known to be important in template-directed misfolding. We tested if W32 contributes to SOD1 cytotoxicity and if it is an appropriate drug target to ameliorate ALS-like neuromuscular deficits in a zebrafish model of motor neuron axon morphology and function (swimming). Embryos injected with human SOD1 variant with W32 substituted for a serine (SOD1W32S) had reduced motor neuron axonopathy and motor deficits compared to those injected with wildtype or disease-associated SOD1. A library of FDA-approved small molecules was ranked with virtual screening based on predicted binding to W32, and subsequently filtered for analogues using a pharmacophore model based on molecular features of the uracil moiety of a small molecule previously predicted to interact with W32 (5'-fluorouridine or 5'-FUrd). Along with testing 5'-FUrd and uridine, a lead candidate from this list was selected based on its lower toxicity and improved blood brain barrier penetrance; telbivudine significantly rescued SOD1 toxicity in a dose-dependent manner. The mechanisms whereby the small molecules ameliorated motor neuron phenotypes were specifically mediated through human SOD1 and its residue W32, because these therapeutics had no measurable impact on the effects of UBQLN4D90A, EtOH, or tryptophan-deficient human SOD1W32S. By substituting W32 for a more evolutionarily conserved residue (serine), we confirmed the significant influence of W32 on human SOD1 toxicity to motor neuron morphology and function; further, we performed pharmaceutical targeting of the W32 residue for rescuing SOD1 toxicity. This unique residue offers future novel insights into SOD1 stability and toxic gain of function, and therefore poses an potential target for drug therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/pathology , Superoxide Dismutase-1/metabolism , Tryptophan/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Humans , Motor Neurons/drug effects , Nucleic Acid Synthesis Inhibitors/pharmacology , Superoxide Dismutase-1/chemistry , Telbivudine/pharmacology , Tryptophan/chemistry , Tryptophan/genetics , Zebrafish
4.
J Phys Chem B ; 121(39): 9268-9273, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28880087

ABSTRACT

Molecular theory of solvation, a.k.a., three-dimensional reference interaction site model theory of solvation with Kovalenko-Hirata closure relation (3D-RISM-KH), is an accurate and fast theory predicting solvation free energy and structure. Here we report a benchmark study of n-octanol solvation free energy calculations using this theory. The choice of correct force field parameters is quintessential for the success of 3D-RISM theory, and we present a guideline to obtain them for n-octanol solvent. Our best prediction of the solvation free energy on a set of 205 small organic molecules supplemented with the so-called "universal correction" scheme yields relative mean unsigned error of 0.94 kcal/mol against the reported database. The best agreement is obtained with the united atom (UA) type force field parametrization of n-octanol with the van der Waals parameters of hydroxyl hydrogen reported by Kobryn et al. [ Kobryn , A. E. ; Kovalenko , A. J. Chem. Phys. 2008 , 129 , 134701 ].

5.
ACS Omega ; 2(11): 7621-7636, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457321

ABSTRACT

Experimental characterization of the molecular structure of small amyloid (A)ß oligomers that are currently considered as toxic agents in Alzheimer's disease is a formidably difficult task due to their transient nature and tendency to aggregate. Such structural information is of importance because it can help in developing diagnostics and an effective therapy for the disease. In this study, molecular simulations and protein-protein docking are employed to explore a possible connection between the structure of Aß monomers and the properties of the intermonomer interface in the Aß42 dimer. A structurally diverse ensemble of conformations of the monomer was sampled in microsecond timescale implicit solvent replica exchange molecular dynamics simulations. Representative structures with different solvent exposure of hydrophobic residues and secondary structure content were selected to build structural models of the dimer. Analysis of these models reveals that formation of an intramonomer salt bridge (SB) between Asp23 and Lys28 residues can prevent the building of a hydrophobic interface between the central hydrophobic clusters (CHCs) of monomers upon dimerization. This structural feature of the Aß42 dimer is related to the difference in packing of hydrophobic residues in monomers with the Asp23-Lys28 SB in on and off states, in particular, to a lower propensity to form hydrophobic contacts between the CHC domain and C-terminal residues in monomers with a formed SB. These findings could have important implications for understanding the difference between aggregation pathways of Aß monomers leading to neurotoxic oligomers or inert fibrillar structures.

6.
J Comput Aided Mol Des ; 30(11): 1115-1127, 2016 11.
Article in English | MEDLINE | ID: mdl-27585474

ABSTRACT

Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.


Subject(s)
Computer Simulation , Cyclohexanes/chemistry , Pharmaceutical Preparations/chemistry , Solvents/chemistry , Water/chemistry , Isomerism , Models, Chemical , Molecular Conformation , Solubility , Thermodynamics
7.
J Phys Chem B ; 119(17): 5588-97, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25844645

ABSTRACT

The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

8.
J Chem Inf Model ; 55(2): 317-28, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25545470

ABSTRACT

Maltose-binding protein is a periplasmic binding protein responsible for transport of maltooligosaccarides through the periplasmic space of Gram-negative bacteria, as a part of the ABC transport system. The molecular mechanisms of the initial ligand binding and induced large scale motion of the protein's domains still remain elusive. In this study, we use a new docking protocol that combines a recently proposed explicit water placement algorithm based on the 3D-RISM-KH molecular theory of solvation and conventional docking software (AutoDock Vina) to explain the mechanisms of maltotriose binding to the apo-open state of a maltose-binding protein. We confirm the predictions of previous NMR spectroscopic experiments on binding modes of the ligand. We provide the molecular details on the binding mode that was not previously observed in the X-ray experiments. We show that this mode, which is defined by the fine balance between the protein-ligand direct interactions and solvation effects, can trigger the protein's domain motion resulting in the holo-closed structure of the maltose-binding protein with the maltotriose ligand in excellent agreement with the experimental data. We also discuss the role of water in blocking unfavorable binding sites and water-mediated interactions contributing to the stability of observable binding modes of maltotriose.


Subject(s)
Maltose-Binding Proteins/chemistry , Molecular Docking Simulation/methods , Water/chemistry , Algorithms , Bacteria/chemistry , Bacteria/metabolism , Binding Sites , Binding, Competitive , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Solvents
9.
J Mol Model ; 19(12): 5225-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126825

ABSTRACT

Prion-induced diseases are a global health concern. The lack of effective therapy and 100% mortality rates for such diseases have made the prion protein an important target for drug discovery. Previous NMR experimental work revealed that thiamine and its derivatives bind the prion protein in a pocket near the N-terminal loop of helix 1, and conserved intermolecular interactions were noted between thiamine and other thiamine-binding proteins. Furthermore, water-mediated interactions were observed in all of the X-ray crystallographic structures of thiamine-binding proteins, but were not observed in the thiamine-prion NMR study. To better understand the potential role of water in thiamine-prion binding, a docking study was employed using structural X-ray solvent. Before energy minimization, docked thiamine assumed a "V" shape similar to some of the known thiamine-dependent proteins. Following minimization with NMR-derived restraints, the "F" conformation was observed. Our findings confirmed that water is involved in ligand stabilization and phosphate group interaction. The resulting refined structure of thiamine bound to the prion protein allowed the 4-aminopyrimidine ring of thiamine to π-stack with Tyr150, and facilitated hydrogen bonding between Asp147 and the amino group of 4-aminopyrimidine. Investigation of the π-stacking interaction through mutation of the tyrosine residue further revealed its importance in ligand placement. The resulting refined structure is in good agreement with previous experimental restraints, and is consistent with the pharmacophore model of thiamine-binding proteins.


Subject(s)
Carrier Proteins/chemistry , Molecular Docking Simulation , Prions/chemistry , Thiamine/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Hydrogen Bonding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Prions/metabolism , Protein Binding , Protein Conformation , Protein Structure, Secondary , Pyrimidines/chemistry , Thiamine/metabolism
10.
J Chem Theory Comput ; 8(9): 3356-72, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-26605742

ABSTRACT

We explore a new approach in the rational design of specificity in molecular recognition of small molecules based on statistical-mechanical integral equation theory of molecular liquids in the form of the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). The numerically stable iterative solution of conventional 3D-RISM equations includes the fragmental decomposition of flexible ligands, which are treated as distinct species in solvent mixtures of arbitrary complexity. The computed density functions for solution (including ligand) molecules are obtained as a set of discrete spatial grids that uniquely describe the continuous solvent-site distribution around the protein solute. Potentials of mean force derived from these distributions define the scoring function interfaced with the AutoDock program for an automated ranking of docked conformations. As a case study in terms of solvent composition, we analyze cooperative interactions encountered in the binding of a flexible thiamine molecule to the prion protein at near-physiological conditions. The predicted location and residency times of computed binding modes are in excellent agreement with the available experimental data.

11.
J Phys Chem B ; 115(2): 319-28, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21174421

ABSTRACT

Water plays a unique role in all living organisms. Not only is it nature's ubiquitous solvent, but it also actively takes part in many cellular processes. In particular, the structure and properties of interfacial water near biomolecules such as proteins are often related to the function of the respective molecule. It can therefore be highly instructive to study the local water density around solutes in cellular systems, particularly when solvent-mediated forces such as the hydrophobic effect are relevant. Computational methods such as molecular dynamics (MD) simulations seem well suited to study these systems at the atomic level. However, due to sampling requirements, it is not clear that MD simulations are, indeed, the method of choice to obtain converged densities at a given level of precision. We here compare the calculation of local water densities with two different methods: MD simulations and the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). In particular, we investigate the convergence of the local water density to assess the required simulation times for different levels of resolution. Moreover, we provide a quantitative comparison of the densities calculated with MD and with 3D-RISM-KH and investigate the effect of the choice of the water model for both methods. Our results show that 3D-RISM-KH yields density distributions that are very similar to those from MD up to a 0.5 Å resolution, but for significantly reduced computational cost. The combined use of MD and 3D-RISM-KH emerges as an auspicious perspective for efficient solvent sampling in dynamical systems.


Subject(s)
Mathematical Computing , Solutions/chemistry , Water/chemistry , Chaperonin 10/chemistry , Chaperonin 10/metabolism , Chaperonin 60/chemistry , Chaperonin 60/metabolism , Crystallization , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Models, Chemical , Molecular Dynamics Simulation , Solubility , Solvents/chemistry , Specific Gravity , Surface Properties , Thermodynamics
12.
Biophys J ; 98(2): 282-96, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20338850

ABSTRACT

Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17-42) oligomers with protonated Glu(22), on the other, may be explained by destabilization of the inter- and intrapeptide salt bridges between Asp(23) and Lys(28). Peculiarities in the conformational stability and the association thermodynamics for the different models of the Abeta(17-42) oligomers are rationalized based on the analysis of the local physical interactions and the microscopic solvation structure.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Molecular Dynamics Simulation , Mutation, Missense , Peptide Fragments/chemistry , Peptide Fragments/genetics , Amino Acid Sequence , Humans , Hydrogen-Ion Concentration , Linear Models , Models, Molecular , Protein Stability , Protein Structure, Secondary , Static Electricity , Thermodynamics , Time Factors
13.
J Toxicol Environ Health A ; 72(17-18): 1060-8, 2009.
Article in English | MEDLINE | ID: mdl-19697240

ABSTRACT

A statistical-mechanical, three-dimensional molecular theory of solvation (also know as 3D-RISM) and molecular mechanics were used to study the thermodynamics of aggregation of misfolded prion proteins, based on the theoretical molecular models proposed so far. These include the beta-helical prion trimer (BPT) model of Govaerts et al. (2004), the domain-swapped trimeric prion (DSTP) model of Yang et al. (2005), and the model built after the spiral model of DeMarco and Daggett (2004). It is shown that the solvation contribution to the association free energy can overcome the gain in the internal energy upon association of the proteins. The solvation entropic contribution is as important as the energetic term in the total association free energy. Our calculations show that the spiral-like model is thermodynamically less stable, compared to the DSTP and BPT models. Among the latter two models, the DSTP model is more favorable to association. Quantitative assessment of the solvation effects on the association thermodynamics of prion proteins is provided, and explicitly shows that the solvation contribution is a driving force of the association, in particular, for the existing theoretical models of misfolded prion proteins.


Subject(s)
Prions/chemistry , Protein Folding , Computer Simulation , Models, Chemical , Molecular Biology , Protein Conformation , Thermodynamics , Water
14.
Biophys J ; 95(10): 4540-8, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18689456

ABSTRACT

We study the thermodynamic properties of the experimental fragments of the amyloid fibril made of the HET-s prion proteins (the infectious element of the filamentous fungus Podospora anserina) and of amyloid-beta proteins (the major component of Alzheimer's disease-associated plaques) by using the three-dimensional molecular theory of solvation. The full quantitative picture of hydration effects, including the hydration thermodynamics and hydration structure around the fragments, is presented. For both the complexes, the hydration entropic effects dominate, which results in the entropic part offsetting the unfavorable energetic part of the free energy change upon the association. This is in accord with the fact that the hydrophobic cooperativity plays an essential role in the formation of amyloid fibrils. By calculating the partial molar volume of the proteins, we found that the volume change upon the association in both the systems is large and positive, with the implication that high pressure causes destabilization of the fibril. This observation is in good agreement with the recent experimental results. We also found that both the HET-s and amyloid-beta pentamers have loose intermolecular packing with voids. The three-dimensional molecular theory of solvation predicts that water molecules can be locked in the interior cavities along the fibril axis for both the HET-s and amyloid-beta proteins. We provide a detailed molecular picture of the structural water localized in the interior of the fibrils. Our results suggest that the interior hydration plays an important role in the structural stability of fibrils.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Fungal Proteins/chemistry , Fungal Proteins/ultrastructure , Models, Chemical , Models, Molecular , Water/chemistry , Computer Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Conformation , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...