Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 20(15): 155703, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19420555

ABSTRACT

We analyse statistical and kinetic percolation thresholds and maximum electrical conductivities of carbon nanotube epoxy composites as a function of shear forces, processing conditions, nanotube type and dimensions. Entangled and non-entangled nanotubes of different lengths (15-100 microm) and thicknesses (12-80 nm) have been obtained with three different synthesis methods based on catalytic or plasma enhanced chemical vapour deposition. The dispersions were processed either solely with a dissolver disk or additionally with a three roll calender. Care was taken to prevent unintentional shearing (e.g. through convection) in all samples that were not subject to deliberate shearing. It was found that shear forces have a similar influence on kinetic percolation thresholds and composite conductivities independent of nanotube types and dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...