Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617257

ABSTRACT

Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.

2.
Virol J ; 20(1): 197, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658438

ABSTRACT

T'Ho virus is a poorly characterized orthoflavivirus most closely related to Rocio virus and Ilheus virus, two orthoflaviviruses associated with human disease, suggesting that T'Ho virus could also be a human pathogen. The genome of T'Ho virus has been sequenced but an isolate has never been recovered, impeding its phenotypic characterization. In an attempt to generate recombinant T'Ho virus, the entire viral genome was synthesized as three overlapping DNA fragments, joined by Gibson assembly, and transfected into mosquito cells. Several cell culture passages were performed, but virus was not recovered. Subsequent experiments focused on the development of a chimeric orthoflavivirus that contains the premembrane and envelope protein genes of T'Ho virus in the genetic background of Zika virus. The chimeric virus replicated in mosquito (C6/36) and vertebrate (Vero) cells, demonstrating that the major structural glycoproteins of T'Ho virus permit entry into both cell types. The chimeric virus produced plaques in Vero cells that were significantly smaller than those produced by Zika virus. The chimeric virus can potentially be used as a surrogate diagnostic reagent in place of T'Ho virus in plaque reduction neutralization tests, allowing T'Ho virus to be considered in the differential diagnosis.


Subject(s)
Culicidae , Flavivirus , Zika Virus Infection , Zika Virus , Chlorocebus aethiops , Humans , Animals , Zika Virus/genetics , Flavivirus/genetics , Vero Cells , Genetic Background
3.
Arch Virol ; 168(9): 224, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561168

ABSTRACT

This review provides a summary of the recently ratified changes to genus and species nomenclature within the virus family Flaviviridae along with reasons for these changes. First, it was considered that the vernacular terms "flaviviral", "flavivirus", and "flaviviruses" could under certain circumstances be ambiguous due to the same word stem "flavi" in the taxon names Flaviviridae and Flavivirus; these terms could either have referred to all viruses classified in the family Flaviviridae or only to viruses classified in the included genus Flavivirus. To remove this ambiguity, the genus name Flavivirus was changed to Orthoflavivirus by the International Committee on Taxonomy of Viruses (ICTV). Second, all species names in the family were changed to adhere to a newly ICTV-mandated binomial format (e.g., Orthoflavivirus zikaense, Hepacivirus hominis) similar to nomenclature conventions used for species elsewhere in biology. It is important to note, however, that virus names remain unchanged. Here we outline the revised taxonomy of the family Flaviviridae as approved by the ICTV in April 2023.


Subject(s)
Flaviviridae , Flavivirus , Flaviviridae/genetics , Flavivirus/genetics , Hepacivirus , Terminology as Topic
4.
Viral Immunol ; 36(2): 101-109, 2023 03.
Article in English | MEDLINE | ID: mdl-36862827

ABSTRACT

Dengue virus (DENV) is the etiological agent of dengue, the most important mosquito-transmitted viral disease of humans worldwide. Enzyme-linked immunosorbent assays (ELISAs) designed to detect DENV IgM are commonly used for dengue diagnosis. However, DENV IgM is not reliably detected until ≥4 days after illness onset. Reverse transcription-polymerase chain reaction (RT-PCR) can diagnose early dengue but requires specialized equipment, reagents, and trained personnel. Additional diagnostic tools are needed. Limited work has been performed to determine whether IgE-based assays can be used for the early detection of vector-borne viral diseases, including dengue. In this study, we determined the efficacy of a DENV IgE capture ELISA for the detection of early dengue. Sera were collected within the first 4 days of illness onset from 117 patients with laboratory-confirmed dengue, as determined by DENV-specific RT-PCR. The serotypes responsible for the infections were DENV-1 and DENV-2 (57 and 60 patients, respectively). Sera were also collected from 113 dengue-negative individuals with febrile illness of undetermined etiology and 30 healthy controls. The capture ELISA detected DENV IgE in 97 (82.9%) confirmed dengue patients and none of the healthy controls. There was a high false positivity rate (22.1%) among the febrile non-dengue patients. In conclusion, we provide evidence that IgE capture assays have the potential to be explored for early diagnosis of dengue, but further research is necessary to address the possible false positivity rate among patients with other febrile illnesses.


Subject(s)
Antibodies, Viral , Dengue , Enzyme-Linked Immunosorbent Assay , Immunoglobulin E , Animals , Humans , Antibodies, Viral/immunology , Dengue Virus/immunology , Early Diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity , Serogroup , Dengue/diagnosis , Dengue/immunology , Immunoglobulin E/immunology , False Positive Reactions
5.
Arch Virol ; 167(12): 2577-2590, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36056958

ABSTRACT

To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.


Subject(s)
Culex , Culicidae , RNA Viruses , Rhabdoviridae , Viruses , Humans , Animals , United States , Rhabdoviridae/genetics , Mammals
6.
Virology ; 574: 102-114, 2022 09.
Article in English | MEDLINE | ID: mdl-35969917

ABSTRACT

Most flaviviruses cycle between arthropods and vertebrates. Others, such as Long Pine Key virus (LPKV), are insect-specific. We investigated whether untranslated sequences in the genome of LPKV are critical determinants of its host restriction. A chimeric virus was created by inserting the entire 5' and 3' untranslated regions and capsid gene of LPKV into the genetic backbone of Zika virus (ZIKV). The virus replicated in mosquito cells, but not vertebrate cells. Three additional chimeras were created by exchanging specific regions in the 5' and 3' untranslated regions of ZIKV with the corresponding regions of LPKV. A chimera that contained stem loop A (the viral promoter) of LPKV in the genetic background of ZIKV produced virus that replicated in both mosquito and vertebrate cells. These data suggest that the ZIKV NS5 polymerase recognizes the LPKV promoter and that untranslated genomic elements, other than SLA, are key determinants of insect-specific flavivirus host-specificity.


Subject(s)
Culicidae , Flavivirus , Zika Virus Infection , Zika Virus , 3' Untranslated Regions , Animals , Flavivirus/genetics , Genomics , RNA, Viral/genetics , Virus Replication , Zika Virus/genetics
7.
Am J Trop Med Hyg ; 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35292593

ABSTRACT

Dengue cases and deaths occur frequently in Mexico, although the trend is not uniform across the country. We performed a Spatio-temporal analysis of dengue cases and deaths in Mexico from 2007 to 2020, and clustered states according to whether there was a low, moderate, or high risk of dengue. A total of 501,600 confirmed dengue cases were registered from 2007 to 2020, with 378,122 cases classified as dengue fever (DF) and 123,478 cases classified as dengue hemorrhagic fever (DHF). For each confirmed case, there were 4.68 probable cases. There were 1,230 dengue deaths, with highest numbers reported in 2009, 2012, 2013, and 2019. The number of deaths had a significant correlation (P ≤ 0.01) with DF (r = 0.82), DHF (r = 0.94), and probable dengue cases (r = 0.84). States were clustered using Machine Learning technique according to select indices associated with dengue. Cluster 1 (low risk) primarily contained states in the northwest, northcentral, and east. Cluster 2 (moderate risk) includes states in the northeast. Cluster 3 (high risk) mostly contained coastal states in the southeast, southwest, and west. The generation of the clusters was supported by the Kruskal-Wallis test. A significant difference was found in the incidence, mortality rates, and case-fatality rates of dengue among the clusters (P ≤ 0.01). Notably, cluster 3 contributed 71.4% of the confirmed cases and 89.2% of the deaths. Public health and vector control strategies designed to mitigate the burden of dengue in Mexico should consider the states in cluster 3 as high priority areas.

8.
Am J Trop Med Hyg ; 106(3): 896-899, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35073512

ABSTRACT

We provide evidence of concurrent and close sequential infections between SARS-CoV-2 and select arboviruses-namely, chikungunya virus (CHIKV); dengue viruses 1, 2, and 3 (DENV1-3), and Zika virus (ZIKV)-in patients in Guerrero, southwest Mexico, in 2020-2021. The study population consisted of 176 febrile patients with laboratory evidence of SARS-CoV-2 infection. Sera from all patients were serologically and antigenically tested for seven arboviruses known to occur in Guerrero. Eighteen patients contained CHIKV IgM, six of whom also contained CHIKV RNA. Another 16 patients contained flavivirus antigen. The flaviviruses responsible for the infections were identified by plaque reduction neutralization test as DENV1 (two patients), DENV2 (five patients), DENV3 (three patients), ZIKV (three patients), and an undetermined flavivirus (three patients). In summary, we identified patients in Guerrero, Mexico, with concurrent or recent sequential infections between SARS-CoV-2 and select arboviruses, exemplifying the importance of performing differential diagnosis in regions where these viruses cocirculate.


Subject(s)
Arboviruses , COVID-19 , Chikungunya Fever , Coinfection , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , COVID-19/epidemiology , Dengue/diagnosis , Dengue Virus/genetics , Humans , Mexico/epidemiology , SARS-CoV-2 , Zika Virus/genetics , Zika Virus Infection/epidemiology
9.
J Med Entomol ; 59(2): 659-666, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35064663

ABSTRACT

Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) mosquitoes transmit pathogenic arthropod-borne viruses, including dengue, chikungunya, and Zika viruses, with significant global health consequences. Both Ae. albopictus and Ae. aegypti also are susceptible to Aedes flavivirus (AEFV), an insect-specific flavivirus (ISF) first isolated in Japan from Ae. albopictus and Ae. flavopictus. ISFs infect only insect hosts and evidence suggests that they are maintained by vertical transmission. In some cases, ISFs interfere with pathogenic flavivirus infection, and may have potential use in disease control. We explored the host range of AEFV in 4 genera of mosquitoes after intrathoracic injection and observed greater than 95% prevalence in the species of Aedes and Toxorhynchites tested. Anopheles and Culex species were less permissive to infection. Vertical transmission studies revealed 100% transovarial transmission and a filial infection rate of 100% for AEFV in a persistently-infected colony of Ae. albopictus. Horizontal transmission potential was assessed for adult and larval mosquitoes following per os exposures and in venereal transmission experiments. No mosquitoes tested positive for AEFV infection after blood feeding, and infection with AEFV after sucrose feeding was rare. Similarly, 2% of adult mosquitoes tested positive for AEFV after feeding on infected cells in culture as larvae. Venereal transmission of AEFV was most frequently observed from infected males to uninfected females as compared with transmission from infected females to uninfected males. These results reveal new information on the infection potential of AEFV in mosquitoes and expand our understanding of both vertical and horizontal transmission of ISFs.


Subject(s)
Aedes , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Biology , Female , Insecta , Larva , Male , Mosquito Vectors
10.
Vector Borne Zoonotic Dis ; 21(11): 884-891, 2021 11.
Article in English | MEDLINE | ID: mdl-34652234

ABSTRACT

We conducted serologic surveillance for flaviviruses and orthobunyaviruses in vertebrate animals in Mexico in 2018-2019. Sera were collected from 856 vertebrate animals, including 323 dogs, 223 horses, and 121 cows, from 16 species. The animals were from 3 states: Chihuahua in northwest Mexico (704 animals) and Guerrero and Michoacán on the Pacific Coast (27 and 125 animals, respectively). Sera were assayed by plaque reduction neutralization test using four flaviviruses (dengue type 2, St. Louis encephalitis, West Nile, and Zika viruses) and six orthobunyaviruses from the Bunyamwera (BUN) serogroup (Cache Valley, Lokern, Main Drain, Northway, Potosi, and Tensaw viruses). Antibodies to West Nile virus (WNV) were detected in 154 animals of 9 species, including 89 (39.9%) horses, 3 (21.4%) Indian peafowl, and 41 (12.7%) dogs. Antibodies to St. Louis encephalitis virus (SLEV) were detected in seven animals, including three (0.9%) dogs. Antibodies to Lokern virus (LOKV) were detected in 22 animals: 19 (8.5%) horses, 2 (1.7%) cows, and a dog (0.3%). Antibodies to Main Drain virus (MDV) were detected in three (1.3%) horses. WNV and LOKV activity was detected in all three states, SLEV activity was detected in Chihuahua and Michoacán, and MDV activity was detected in Chihuahua. None of the animals was seropositive for Cache Valley virus, the most common and widely distributed BUN serogroup virus in North America. In conclusion, we provide serologic evidence that select flaviviruses and BUN serogroup viruses infect vertebrate animals in Chihuahua, Guerrero, and Michoacán. We also provide the first evidence of LOKV and MDV activity in Mexico.


Subject(s)
Cattle Diseases , Dog Diseases , Encephalitis, St. Louis , Horse Diseases , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Cattle , Dogs , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/epidemiology , Encephalitis, St. Louis/veterinary , Female , Horse Diseases/epidemiology , Horses , Mexico/epidemiology , Vertebrates , West Nile Fever/epidemiology , West Nile Fever/veterinary , Zika Virus Infection/veterinary
11.
J Gen Virol ; 102(9)2021 09.
Article in English | MEDLINE | ID: mdl-34486974

ABSTRACT

Most flaviviruses are transmitted horizontally between vertebrate hosts by haematophagous arthropods. Others exhibit host ranges restricted to vertebrates or arthropods. Vertebrate-specific flaviviruses are commonly referred to as no-known-vector (NKV) flaviviruses and can be separated into bat- and rodent-associated NKV flaviviruses. Rio Bravo virus (RBV) is one of eight recognized bat-associated NKV (B-NKV) flaviviruses. Studies designed to identify the genetic determinants that condition the host range restriction of B-NKV flaviviruses have never been performed. To investigate whether the host range restriction occurs at the level of attachment or entry, chimeric flaviviruses were created by inserting the pre-membrane and envelope protein genes of RBV into the genetic backbones of yellow fever virus (YFV) and Zika virus (ZIKV), two mosquito-borne flaviviruses associated with human disease. The chimeric viruses infected both vertebrate and mosquito cells. In vertebrate cells, all viruses produced similar mean peak titres, but the chimeric viruses grew more slowly than their parental viruses during early infection. In mosquito cells, the chimeric virus of YFV and RBV grew more slowly than YFV at early post-inoculation time points, but reached a similar mean peak titre. In contrast, the chimeric virus of ZIKV and RBV produced a mean peak titre that was approximately 10-fold lower than ZIKV. The chimeric virus of YFV and RBV produced an intermediate plaque phenotype, while the chimeric virus of ZIKV and RBV produced smaller plaques than both parental viruses. To conclude, we provide evidence that the structural glycoproteins of RBV permit entry into both mosquito and vertebrate cells, indicating that the host range restriction of B-NKV flaviviruses is mediated by a post-attachment/entry event.


Subject(s)
Flavivirus/physiology , Host Specificity , Virus Internalization , Animals , Cell Line , Chiroptera/virology , Flavivirus/genetics , Gene Transfer Techniques , Genes, Viral , Genes, env , Genome, Viral , Viral Envelope Proteins/genetics , Viral Envelope Proteins/physiology , Viral Load , Viral Plaque Assay , Virus Attachment , Virus Replication , Yellow fever virus/genetics , Yellow fever virus/physiology , Zika Virus/genetics , Zika Virus/physiology
12.
Am J Trop Med Hyg ; 105(5): 1281-1284, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34460419

ABSTRACT

The local public health authorities reported nine cases of chikungunya in Mexico in 2019, none of which occurred in Guerrero, a coastal state in the southwest. To test the hypothesis that chikungunya is grossly underreported in Mexico, acute sera were collected from 639 febrile patients from low-income households in Guerrero in 2019 and serologically assayed for chikungunya virus (CHIKV). Analysis of the sera by plaque reduction neutralization test revealed that 181 (28.3%) patients were seropositive for CHIKV. To identify patients with acute CHIKV infections, a subset of serum samples were tested for CHIKV-specific IgM by ELISA. Serum samples from 21 of 189 (11.1%) patients were positive. These patients met the chikungunya case definition established by the WHO. In conclusion, we provide evidence that CHIKV remains an important public health problem in Mexico and that the true number of cases is severely underestimated.


Subject(s)
Chikungunya Fever/blood , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Data Accuracy , Immunoglobulin M/blood , Public Health Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , Chikungunya Fever/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Mexico/epidemiology , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
13.
Vector Borne Zoonotic Dis ; 21(6): 458-465, 2021 06.
Article in English | MEDLINE | ID: mdl-33944623

ABSTRACT

A clinical and entomological investigation was performed to identify flavivirus infections in humans and mosquitoes in impoverished areas of Guerrero, a coastal state in southwestern Mexico. A total of 639 patients with acute febrile illness and 830 resting female mosquitoes in low-income communities of Guerrero in 2019 were tested for evidence of flavivirus infection. Sera were collected from all patients and screened at a dilution of 1:20 by plaque reduction neutralization test (PRNT) using dengue virus (DENV)2. A total of 431 (67.4%) patients were seropositive. Sera from a subset of seropositive patients (n = 263) were tested for flavivirus NS1 by enzyme-linked immunosorbent assay. Forty-eight (18.3%) sera contained viral antigen. All NS1-positive sera were titrated and further tested by PRNT using DENV-1 to -4, St. Louis encephalitis virus, West Nile virus, and Zika virus (ZIKV). Seven patients were seropositive for DENV-1, five patients were seropositive for DENV-2, one patient was seropositive for DENV-3, and two patients each were seropositive for DENV-4 and ZIKV. The remainder had secondary flavivirus infections or antibodies to an undetermined flavivirus. Comparative PRNTs were also performed on 60 randomly selected NS1-negative sera, identifying patients seropositive for DENV-2, DENV-3, and ZIKV. The entomological investigation yielded 736 Aedes aegypti and 94 Culex quinquefasciatus that were sorted into 183 pools and 20 pools, respectively. Mosquitoes were assayed for flavivirus RNA by RT-PCR and Sanger sequencing. DENV-2 RNA was detected in three pools of A. aegypti. In summary, we provide evidence for the concurrent circulation of all four DENVs and ZIKV in Guerrero, Mexico. The public health authorities reported no cases of DENV-3, DENV-4, and ZIKV in Guerrero in 2019 and thus, we provide evidence of under-reporting in the region.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Dengue/epidemiology , Dengue/veterinary , Dengue Virus/genetics , Female , Humans , Mexico/epidemiology , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary
14.
Parasit Vectors ; 14(1): 261, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34006306

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. METHODS: An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. RESULTS: Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. CONCLUSIONS: Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Serial Passage/methods , Zika Virus Infection/transmission , Zika Virus/genetics , Zika Virus/physiology , Animals , Cell Line , Chlorocebus aethiops , Disease Vectors , Genetic Fitness , Insecta/cytology , Salivary Glands/virology , Vero Cells , Viral Load
15.
Virology ; 559: 30-39, 2021 07.
Article in English | MEDLINE | ID: mdl-33812340

ABSTRACT

Long Pine Key virus (LPKV) and Lammi virus are insect-specific flaviviruses that phylogenetically affiliate with dual-host flaviviruses. The goal of this study was to provide insight into the genetic determinants that condition this host range restriction. Chimeras were initially created by replacing select regions of the Zika virus genome, including the premembrane and envelope protein (prM-E) genes, with the corresponding regions of the LPKV genome. Of the four chimeras produced, one (the prM-E swap) yielded virus that replicated in mosquito cells. Another chimeric virus with a mosquito replication-competent phenotype was created by inserting the prM-E genes of Lammi virus into a Zika virus genetic background. Vertebrate cells did not support the replication of either chimeric virus although trace to modest amounts of viral antigen were produced, consistent with suboptimal viral entry. These data suggest that dual-host affiliated insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions.


Subject(s)
Insecta/virology , Protein Processing, Post-Translational , Viral Structural Proteins/genetics , Virus Replication/genetics , Zika Virus/genetics , Animals , Flavivirus/classification , Flavivirus/genetics , Flavivirus/physiology , Proteomics , Zika Virus/physiology , Zika Virus Infection
16.
Emerg Infect Dis ; 27(2): 574-577, 2021 02.
Article in English | MEDLINE | ID: mdl-33496242

ABSTRACT

Evidence suggests that pigs seroconvert after experimental exposure to Zika virus and are potential sentinels. We demonstrate that pigs are also susceptible to natural Zika virus infection, shown by the presence of antibodies in domestic pigs in Yucatan, Mexico. Zika virus RNA was detected in 5 species of mosquitoes collected inside pigpens.


Subject(s)
Aedes , Culex , Zika Virus Infection , Zika Virus , Animals , Mexico/epidemiology , Mosquito Vectors , Swine , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary
17.
Viruses ; 12(9)2020 08 25.
Article in English | MEDLINE | ID: mdl-32854298

ABSTRACT

Arthropod-borne viruses (arboviruses) are primarily maintained in nature in transmission cycles between hematophagous arthropods and vertebrate hosts, but an increasing number of arboviruses have been isolated from or indirectly detected in the urogenital tract and sexual secretions of their vertebrate hosts, indicating that further investigation on the possibility of sexual transmission of these viruses is warranted. The most widely recognized sexually-transmitted arbovirus is Zika virus but other arboviruses, including Crimean-Congo hemorrhagic fever virus and dengue virus, might also be transmitted, albeit occasionally, by this route. This review summarizes our current understanding on the ability of arboviruses to be sexually transmitted. We discuss the sexual transmission of arboviruses between humans and between vertebrate animals, but not arthropod vectors. Every taxonomic group known to contain arboviruses (Asfarviridae, Bunyavirales, Flaviviridae, Orthomyxoviridae, Reoviridae, Rhabdoviridae and Togaviridae) is covered.


Subject(s)
Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/isolation & purification , Sexually Transmitted Diseases/transmission , Sexually Transmitted Diseases/virology , Animals , Arboviruses/classification , Genitalia/virology , Humans , Semen/virology
18.
Parasit Vectors ; 12(1): 384, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31366369

ABSTRACT

BACKGROUND: Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas. RESULTS: Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions. CONCLUSIONS: Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV.


Subject(s)
Aedes/virology , Bunyamwera virus/physiology , Bunyaviridae Infections/transmission , Mosquito Vectors/virology , Zoonoses/transmission , Zoonoses/virology , Aedes/physiology , Animals , Bunyaviridae Infections/virology , Cities , Female , Humans , North America , RNA, Viral/analysis , Saliva/virology , Viral Load , Virus Replication
19.
Rev Inst Med Trop Sao Paulo ; 61: e9, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30785563

ABSTRACT

This study was designed to assess whether churches in endemic dengue districts in Merida, Mexico provide suitable breeding habitats for mosquitoes and are potential sites for dengue virus (DENV) transmission. Churches were inspected for immature and adult mosquitoes once every week from November 2015 to October 2016. A total of 10,997 immatures of five species were collected. The most abundant species were Aedes aegypti (6,051) and Culex quinquefasciatus (3,018). The most common source of immature Ae. aegypti were buckets followed by disposable containers. Adult collections yielded 21,226 mosquitoes of nine species. The most common species were Cx. quinquefasciatus (15,215) and Ae. aegypti (3,902). Aedes aegypti were found all year long. Female Ae. aegypti (1,380) were sorted into pools (166) and assayed for flavivirus RNA by RT-PCR and Sanger sequencing. Two pools were positive for DENV (DENV-1 and 2). In conclusion, we demonstrated that some churches in Merida are infested with mosquitoes all year long and they potentially serve as sites for DENV transmission and should therefore be considered for inclusion in mosquito and arboviruses control and surveillance efforts.


Subject(s)
Culicidae/virology , Dengue Virus/genetics , Ecosystem , Mosquito Vectors/virology , Animals , Culicidae/classification , Dengue/transmission , Female , Mexico , Real-Time Polymerase Chain Reaction , Religion
20.
J Gen Virol ; 100(2): 295-300, 2019 02.
Article in English | MEDLINE | ID: mdl-30632960

ABSTRACT

The genomic organization and in vitro host range of a novel mosquito-associated orbivirus, designated Skunk River virus, is described. The virus was isolated from Aedes trivittatus collected in Iowa in the United States. Three recognized viruses were also recovered: Culex flavivirus (family Flaviviridae), Houston virus (family Mesoniviridae) and Umatilla virus (family Reoviridae). The genome of Skunk River virus contains 10 segments and its organization is characteristic of viruses in the genus Orbivirus (family Reoviridae). The coding region of each segment was fully sequenced, revealing that the greatest nucleotide identity was to the corresponding regions of Big Cypress orbivirus and Sathuvachari virus, two recently described mosquito-associated orbiviruses. The phylogenetic inference is in agreement with these findings. In vitro host range experiments revealed that Aedes, Anopheles and Culex cell lines, and select lepidopteran and rodent cell lines, are permissive to Skunk River virus replication. In conclusion, we provide evidence of a novel mosquito-associated orbivirus in Iowa.


Subject(s)
Aedes/virology , Genome, Viral , Host Specificity , Orbivirus/classification , Orbivirus/isolation & purification , Animals , Anopheles , Cell Line , Culex , Gene Order , Iowa , Lepidoptera , Orbivirus/genetics , Orbivirus/physiology , Phylogeny , Rodentia , Sequence Analysis, DNA , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...