Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(25): 5028-5040, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885649

ABSTRACT

Methyl esters are an important component of combustion and atmospheric systems. Reaction with the OH radical plays an important role in the removal of the simplest methyl ester, methyl formate (MF, CH3OCHO). In this paper, the overall rate coefficients for the reactions of OH and OD with MF isotopologues, studied under pseudo-first-order conditions, are reported using two different laser flash photolysis systems with the decay of OH monitored by laser-induced fluorescence. The room-temperature rate coefficient for OH + MF, (1.95 ± 0.34) × 10-13 cm3 molecule-1 s-1, is in good agreement with the literature. The rate coefficient exhibits curved Arrhenius behavior, and our results bridge the gap between previous low-temperature and shock tube studies. In combination with the literature, the rate coefficient for the reaction of OH with MF between 230 and 1400 K can be parametrized as kOH+MF = (3.2 × 10-13) × (T/300 K)2.3 × exp(-141.4 K/T) cm3 molecule-1 s-1 with an overall estimated uncertainty of ∼30%. The reactions of OD with MF isotopologues show a small enhancement (inverse secondary isotope effect) compared to the respective OH reactions. The reaction of OH/OD with MF shows a normal primary isotope effect, a decrease in the rate coefficient when MF is partially or fully deuterated. Experimental studies have been supported by ab initio calculations at the CCSD(T)-F12/aug-cc-pVTZ//M06-2X/6-31+G** level of theory. The calculated, zero-point-corrected, barrier heights for abstraction at the methyl and formate sites are 1.3 and 6.0 kJ mol-1, respectively, and the ab initio predictions of kinetic isotope effects are in agreement with experiment. Fitting the experimental isotopologue data refines these barriers to 0.9 ± 0.6 and 4.1 ± 0.9 kJ mol-1. The branching ratio is approximately 50:50 at 300 K. Between 300 and 500 K, abstraction via the higher-energy, higher-entropy formate transition state becomes more favored (60:40). However, experiment and calculations suggest that as the temperature increases further, with higher energy, less constrained conformers of the methyl transition state become more significant. The implications of the experimental and theoretical results for the mechanisms of MF atmospheric oxidation and low-temperature combustion are discussed.

2.
J Phys Chem A ; 128(14): 2815-2824, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38551990

ABSTRACT

Kinetics of reactions between SO2 and CH3CHOO Criegee intermediate conformers have been measured at temperatures between 242 and 353 K and pressures between 10 and 600 Torr using laser flash photolysis of CH3CHI2/O2/N2/SO2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. The kinetics of syn-CH3CHOO + SO2 are pressure-dependent and exhibit a negative temperature dependence, with the observed pressure dependence reconciling apparent discrepancies between previous measurements performed at ∼298 K. Results indicate a rate coefficient of (4.80 ± 0.46) × 10-11 cm3 s-1 for the reaction of syn-CH3CHOO with SO2 at 298 K and 760 Torr. In contrast to the behavior of the syn-conformer, the kinetics of anti-CH3CHOO + SO2 display no significant dependence on temperature or pressure over the ranges investigated, with a mean rate coefficient of (1.18 ± 0.21) × 10-10 cm3 s-1 over all conditions studied in this work. Results indicate that the reaction of syn-CH3CHOO with SO2 competes with unimolecular decomposition and reaction with water vapor in areas with high SO2 concentration and low humidity, particularly at lower temperatures.

3.
J Phys Chem A ; 128(8): 1501-1510, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38377581

ABSTRACT

Activated chemistry in coupled reaction systems has broadened our understanding of the chemical kinetics. In the case of intermediates formed in gas phase abstraction reactions (e.g., OH + HC(O)C(O)H (glyoxal) →HC(O)CO + H2O), it is particularly crucial to understand how the reaction energy is partitioned between product species as this determines the propensity for a given product to undergo "prompt" dissociation (e.g., HC(O)CO → HCO + CO) before the excess reaction energy is removed. An example of such an activated system is the OH + glyoxal + O2 coupled reaction system. In this work, we develop a molecular dynamics pipeline, which, combined with a master equation analysis, accurately models previous experimental measurements. This new work resolves previous complexities and discrepancies from earlier master equation modeling for this reaction system. The detailed molecular dynamics approach employed here is a powerful new tool for modeling challenging activated reaction systems.

4.
J Phys Chem A ; 127(34): 7205-7215, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37589656

ABSTRACT

The first experimental study of the low-temperature kinetics of the gas-phase reaction between NH2 and NO has been performed. A pulsed laser photolysis-laser-induced fluorescence technique was used to create and monitor the temporal decay of NH2 in the presence of NO. Measurements were carried out over the temperature range of 24-106 K, with the low temperatures achieved using a pulsed Laval nozzle expansion. The negative temperature dependence of the reaction rate coefficient observed at higher temperatures in the literature continues at these lower temperatures, with the rate coefficient reaching 3.5 × 10-10 cm3 molecule-1 s-1 at T = 26 K. Ab initio calculations of the potential energy surface were combined with rate theory calculations using the MESMER software package in order to calculate and predict rate coefficients and branching ratios over a wide range of temperatures, which are largely consistent with experimentally determined literature values. These theoretical calculations indicate that at the low temperatures investigated for this reaction, only one product channel producing N2 + H2O is important. The rate coefficients determined in this study were used in a gas-phase astrochemical model. Models were run over a range of physical conditions appropriate for cold to warm molecular clouds (10 to 30 K; 104 to 106 cm-3), resulting in only minor changes (<1%) to the abundances of NH2 and NO at steady state. Hence, despite the observed increase in the rate at low temperatures, this mechanism is not a dominant loss mechanism for either NH2 or NO under dark cloud conditions.

5.
J Phys Chem A ; 127(31): 6509-6520, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37505100

ABSTRACT

The first theoretical results regarding the gas-phase reaction mechanism and kinetics of the CH (X2Π) + OCS reaction are presented here. This reaction has a proposed importance in the removal of OCS in regions of the interstellar medium (ISM) and has the potential to form the recently observed HCS/HSC isomers, with both constitutional isomers having recently been observed in the L483 molecular cloud in a 40:1 ratio. Statistical rate theory simulations were performed on stationary points along the reaction potential energy surface (PES) obtained from ab initio calculations at the RO-CCSD(T)/aug-cc-pV(Q+d)Z//M06-2X-D3/aug-cc-pV(Q+d)Z level of theory over the temperature and total density range of 150-3000 K and 1011-1024 cm-3, respectively, using a Master Equation analysis. Exploration of the reaction potential energy surface revealed that all three pathways identified to create CS + HCO products required surmounting barriers of 16.5 kJ mol-1 or larger when CH approached the oxygen side of OCS, rendering this product formation negligible below 1000 K, and certainly under low-temperature ISM conditions. In contrast, when CH approaches the sulfur side of OCS, only submerged barriers are found along the reaction potential energy surface to create HCCO + S or CO + HCS, both of which are formed via a strongly bound OCC(H)S intermediate (-358.9 kJ mol-1). Conversion from HCS to HSC is possible via a barrier of 77.8 kJ mol-1, which is still -34.1 kJ mol-1 below the CH + OCS entrance channel. No direct route from CH + OCS to H + CO + CS was found from our ab initio calculations. Rate theory simulations suggest that the reaction has a strong negative temperature dependence, in accordance with the barrierless addition of CH to the sulfur side of OCS. Product branching fractions were also determined from MESMER simulations over the same temperature and total density range. The product branching fraction of CO + HCS reduces from 79% at 150 K to 0.0% at 800 K, while that of HCS dissociation to H + CS + CO increases from 22% at 150 K to 100% at 800 K. The finding of CO + HCS as the major product at the low temperatures relevant to the ISM, instead of H + CS + CO, is in opposition to the current supposition used in the KIDA database and should be adapted in astrochemical models as another source of the HCS isomer.

6.
JACS Au ; 3(6): 1684-1694, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37388696

ABSTRACT

Literature rate coefficients for the prototypical radical-radical reaction at 298 K vary by close to an order of magnitude; such variations challenge our understanding of fundamental reaction kinetics. We have studied the title reaction at room temperature via the use of laser flash photolysis to generate OH and HO2 radicals, monitoring OH by laser-induced fluorescence using two different approaches, looking at the direct reaction and also the perturbation of the slow OH + H2O2 reaction with radical concentration, and over a wide range of pressures. Both approaches give a consistent measurement of k1,298K ∼1 × 10-11 cm3 molecule-1 s-1, at the lowest limit of previous determinations. We observe, experimentally, for the first time, a significant enhancement in the rate coefficient in the presence of water, k1,H2O, 298K = (2.17 ± 0.09) × 10-28 cm6 molecule-2 s-1, where the error is statistical at the 1σ level. This result is consistent with previous theoretical calculations, and the effect goes some way to explaining some, but not all, of the variation in previous determinations of k1,298K. Supporting master equation calculations, using calculated potential energy surfaces at the RCCSD(T)-F12b/CBS//RCCSD/aug-cc-pVTZ and UCCSD(T)/CBS//UCCSD/aug-cc-pVTZ levels, are in agreement with our experimental observations. However, realistic variations in barrier heights and transition state frequencies give a wide range of calculated rate coefficients showing that the current precision and accuracy of calculations are insufficient to resolve the experimental discrepancies. The lower value of k1,298K is consistent with experimental observations of the rate coefficient of the related reaction, Cl + HO2 → HCl + O2. The implications of these results in atmospheric models are discussed.

7.
Faraday Discuss ; 245(0): 261-283, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37340790

ABSTRACT

The first experimental study of the low-temperature kinetics of the gas-phase reaction of NH2 with acetaldehyde (CH3CHO) has been performed. Experiments were carried out using laser-flash photolysis and laser-induced fluorescence spectroscopy to create and monitor the temporal decay of NH2 in the presence of CH3CHO. Low temperatures relevant to the interstellar medium were achieved using a pulsed Laval nozzle expansion. Rate coefficients were measured over the temperature and pressure range of 29-107 K and 1.4-28.2 × 1016 molecules per cm3, with the reaction exhibiting a negative temperature dependence and a positive pressure dependence. The yield of CH3CO from the reaction has also been determined at 67.1 and 35.0 K, by observing OH produced from the reaction of CH3CO with added O2. Ab initio calculations of the potential energy surface (PES) were combined with Rice-Rampsberger-Kessel-Marcus (RRKM) calculations to predict rate coefficients and branching ratios over a broad range of temperatures and pressures. The calculated rate coefficients were shown to be sensitive to the calculated density of states of the stationary points, which in turn are sensitive to the inclusion of hindered rotor potentials for several of the vibrational frequencies. The experimentally determined rate coefficients and yields have been used to fit the calculated PES, from which low-pressure limiting rate coefficients relevant to the ISM were determined. These have been included in a single-point dark cloud astrochemical model, in which the reaction is shown to be a potential source of gas-phase CH3CO radicals under dark cloud conditions.

8.
J Phys Chem A ; 127(10): 2367-2375, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36857400

ABSTRACT

The reaction of CH radicals with H2 has been studied by the use of laser flash photolysis, probing CH decays under pseudo-first-order conditions using laser-induced fluorescence (LIF) over the temperature range 298-748 K at pressures of ∼5-100 Torr. Careful data analysis was required to separate the CH LIF signal at ∼428 nm from broad background fluorescence, and this interference increased with temperature. We believe that this interference may have been the source of anomalous pressure behavior reported previously in the literature (Brownsword, R. A.; J. Chem. Phys. 1997, 106, 7662-7677). The rate coefficient k1 shows complex behavior: at low pressures, the main route for the CH3* formed from the insertion of CH into H2 is the formation of 3CH2 + H, and as the pressure is increased, CH3* is increasingly stabilized to CH3. The kinetic data on CH + H2 have been combined with experimental shock tube data on methyl decomposition and literature thermochemistry within a master equation program to precisely determine the rate coefficient of the reverse reaction, 3CH2 + H → CH + H2. The resulting parametrization is kCH2+H(T) = (1.69 ± 0.11) × 10-10 × (T/298 K)(0.05±0.010) cm3 molecule-1 s-1, where the errors are 1σ.

9.
Phys Chem Chem Phys ; 25(11): 7719-7733, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36876874

ABSTRACT

Rate coefficients for the reaction of CN with CH2O were measured for the first time below room temperature in the range 32-103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis-Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10-11 cm3 molecule-1 s-1 at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CH2O reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol-1, prior to two transition states with energies of -0.62 and 3.97 kJ mol-1, leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol-1 was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this ab initio description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32-769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4-1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model.

10.
J Phys Chem A ; 126(41): 7514-7522, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36215659

ABSTRACT

A master equation (ME) analysis of available experimental data has been carried out on the reaction HO2 + NO2 + M ⇋ HO2NO2 + M (1a)/(-1a). The analysis, based on the ME code MESMER, uses both the association and dissociation kinetic data from the literature, and provides improved thermochemistry on reaction 1a. Our preferred model assigns two low-frequency vibrations of HO2NO2 as hindered rotors and couples these to the external rotations. This model gives ΔrH°0(1a) = -93.9 ± 1.0 kJ mol-1, which implies that ΔfH°0 HO2NO2 = -42.0 ± 1.0 kJ mol-1 (uncertainties are 2σ). A significant contributor to the uncertainty derives from modeling the interaction between the internal and external rotors. Using this improved kinetics for reaction 1a/-1a, data at elevated temperatures, 353-423 K, which show no evidence of the expected equilibration, have been reanalyzed, indicating that an additional reaction is occurring that masks the equilibration. Based on a published ab initio study, this additional channel is assigned to the bimolecular reaction HO2 + NO2 → H-NO2 + O2 (1b); H-NO2 is nitryl hydride and has not previously been directly observed in experiments. The output of the master equation analysis has been parametrized and Troe expressions are provided for an improved description of k1a(p,T) and k-1a(p,T).

11.
J Phys Chem A ; 126(39): 6984-6994, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36146923

ABSTRACT

The kinetics of the unimolecular decomposition of the stabilized Criegee intermediate syn-CH3CHOO has been investigated at temperatures between 297 and 331 K and pressures between 12 and 300 Torr using laser flash photolysis of CH3CHI2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy. Fits to experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicate that the barrier height to decomposition is 67.2 ± 1.3 kJ mol-1 and that there is a strong tunneling component to the decomposition reaction under atmospheric conditions. At 298 K and 760 Torr, MESMER simulations indicate a rate coefficient of 150-81+176 s-1 when tunneling effects are included but only 5-2+3 s-1 when tunneling is not considered in the model. MESMER simulations were also performed for the unimolecular isomerization of the stabilized Criegee intermediate anti-CH3CHOO to methyldioxirane, indicating a rate coefficient of 54-21+34 s-1 at 298 K and 760 Torr, which is not impacted by tunneling effects. Expressions to describe the unimolecular kinetics of syn- and anti-CH3CHOO are provided for use in atmospheric models, and atmospheric implications are discussed.

12.
Phys Chem Chem Phys ; 24(20): 12419-12432, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35575018

ABSTRACT

The rate constants of many reactions currently considered to be important in the atmospheric chemistry of mercury remain to be measured in the laboratory. Here we report the first experimental determination of the rate constant of the gas-phase reaction between the HgBr radical and ozone, for which a value at room temperature of k(HgBr + O3) = (7.5 ± 0.6) × 10-11 cm3 molecule s-1 (1σ) has been obtained. The rate constants of two reduction side reactions were concurrently determined: k(HgBr + O) = (5.3 ± 0.4) × 10-11 cm3 molecule s-1 and k(HgBrO + O) = (9.1 ± 0.6) × 10-11 cm3 molecule s-1. The value of k(HgBr + O3) is slightly lower than the collision number, confirming the absence of a significant energy barrier. Considering the abundance of ozone in the troposphere, our experimental rate constant supports recent modelling results suggesting that the main atmospheric fate of HgBr is reaction with ozone to form BrHgO.

13.
JACS Au ; 2(4): 809-818, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35557766

ABSTRACT

2-Methyl-1,3-butadiene (isoprene), released from biogenic sources, accounts for approximately a third of hydrocarbon emissions and is mainly removed by hydroxyl radicals, OH, the primary initiator of atmospheric oxidation. In situ measurements in clean tropical forests (high isoprene and low NO x ) have measured OH concentrations up to an order of magnitude higher than model predictions, which impacts our understanding of global oxidation. In this study, direct, laser flash photolysis, laser-induced fluorescence measurements at elevated temperatures have observed OH recycling in the presence of isoprene and oxygen under conditions where interference from secondary or heterogeneous chemistry is minimal. Our results provide the first direct, time-resolved, experimental validation of the theory-based Leuven Isoprene Mechanism (LIM1), based on isomerization of isoprene-RO2 radicals and OH regeneration, that partially accounts for model:measurement divergence in OH. While our data can be fit with only minor alterations in important LIM1 parameters, and the overall rate of product formation is similar to LIM1, there are differences with the recent experimental study by Teng et al. J. Am. Chem. Soc. 2017, 139, 5367-5377. In addition, our study indicates that the dihydroperoxide products are significantly enhanced over previous estimates. Dihydroperoxides are chemical and photochemical sources of OH, and the implications of enhanced hydroperoxide formation on the agreement between models and observations in tropical forests are examined.

14.
J Phys Chem A ; 125(48): 10439-10450, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34818012

ABSTRACT

Emissions of amines and amides to the atmosphere are significant from both anthropogenic and natural sources, and amides can be formed as secondary pollutants. Relatively little kinetic data exist on overall rate coefficients with OH, the most important tropospheric oxidant, and even less on site-specific data which control the product distribution. Structure-activity relationships (SARs) can be used to estimate both quantities. Rate coefficients for the reaction of OH with t-butylamine (k1), N-methyl-1,3-propanediamine (k2), and N-methylformamide (k3) have been measured using laser flash photolysis coupled with laser-induced fluorescence. Proton-transfer-reaction mass spectrometry (PTR-MS) has been used to ensure the reliable introduction of these low-vapor pressure N-containing compounds and to give qualitative information on products. Supporting ab initio calculations are presented for the t-butylamine system. The following rate coefficients have been determined: k1,298K= (1.66 ± 0.20) × 10-11 cm3 molecule-1 s-1, k(T)1 = 1.65 × 10-11 (T/300)-0.69 cm3 molecule-1 s-1, k2,293K = (7.09 ± 0.22) × 10-11 cm3 molecule-1 s-1, and k3,298K = (1.03 ± 0.23) × 10-11 cm3 molecule-1 s-1. For OH + t-butylamine, ab initio calculations predict that the fraction of N-H abstraction is 0.87. The dominance of this channel was qualitatively confirmed using end-product analysis. The reaction of OH with N-methyl-1,3-propanediamine also had a negative temperature dependence, but the reduction in the rate coefficient was complicated by reagent loss. The measured rate coefficient for reaction 3 is in good agreement with a recent relative rate study. The results of this work and the literature data are compared with the recent SAR estimates for the reaction of OH with reduced nitrogen compounds. Although the SARs reproduce the overall rate coefficients for reactions, site-specific agreement with this work and other literature studies is less strong.

15.
J Phys Chem A ; 125(43): 9548-9565, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34704447

ABSTRACT

While forward and reverse rate constants are frequently used to determine enthalpies of reaction and formation, this process is more difficult for pressure-dependent association/dissociation reactions, especially since the forward and reverse reactions are usually studied at very different temperatures. The problems can be overcome by using a data-fitting procedure based on a master equation model. This approach has been applied to existing experimental pressure-dependent forward and reverse rate coefficients for the reaction C2H4 + H ⇄ C2H5 (k1, k-1) using the MESMER code to determine ΔfH0⊖C2H5 from the enthalpy of the reaction. New measurements of k1, k-1 were included in analysis. They are based on laser flash photolysis with direct observation of H atom time profiles by vacuum ultraviolet laser-induced fluorescence under conditions where the approach to equilibrium could be observed. Measurements were made over the temperature range 798-828 K and with [He] from 2.33 to 7.21 × 1018 molecule cm-3. These data were then combined with a wide range of existing experimental data with helium as the bath gas (112 measurements of k1 and k-1, covering the temperature range 285-1094 K, and [He] = 7.1 × 1015-1.9 × 1019 molecule cm-3) and fitted using the master equation solver MESMER. The required vibrational frequencies and rotational constants of the system were obtained from ab initio calculations, and the activation threshold for association (ΔEthresh), enthalpy of reaction (ΔrH0⊖), imaginary frequency (υimag), and helium energy-transfer parameters (⟨ΔE⟩d,298(T/298)n) were optimized. The resulting parameters (errors are 2σ) are ΔEthresh = 11.43 ± 0.34 kJ mol-1, ΔrH0⊖ = -145.34 ± 0.60 kJ mol-1, υimag = 730 ± 130 cm-1, ⟨ΔE⟩d,298 = 54.2 ± 7.6 cm-1, and n = 1.17 ± 0.12. A value of ΔfH298.15⊖(C2H5) = 120.49 ± 0.57 kJ mol-1 is obtained by combining ΔrH0⊖ with standard enthalpies of formation for H and C2H4 and making the appropriate temperature corrections. The dependence of these parameters on how the internal rotor and CH2 inversion modes are treated has been explored. The experimental data for other bath gases have been analyzed, and data sets compatible with the potential energy surface parameters determined above have been identified. The parameters are virtually identical but with slightly smaller error limits. Parameterization of k1, k-1 using the Troe formalization has been used to investigate competition between ethyl decomposition and reaction with oxygen under combustion conditions.

16.
Phys Chem Chem Phys ; 23(35): 19415-19423, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34494054

ABSTRACT

The kinetics of the gas phase reaction of the Criegee intermediate CH2OO with SO2 have been studied as a function of temperature in the range 223-344 K at 85 Torr using flash photolysis of CH2I2/O2/SO2/N2 mixtures at 248 nm coupled to time-resolved broadband UV absorption spectroscopy. Measurements were performed under pseudo-first-order conditions with respect to SO2, revealing a negative temperature dependence. Analysis of experimental results using the Master Equation Solver for Multi-Energy well Reactions (MESMER) indicates that the observed temperature dependence, combined with the reported lack of a pressure dependence in the range 1.5-760 Torr, can be described by a reaction mechanism consisting of the formation of a pre-reaction complex leading to a cyclic secondary ozonide which subsequently decomposes to produce HCHO + SO3. The temperature dependence can be characterised by kCH2OO+SO2 = (3.72 ± 0.13) × 10-11 (T/298)(-2.05±0.38) cm3 molecule-1 s-1. The observed negative temperature dependence for the title reaction in conjunction with the decrease in water dimer (the main competitor for the Criegee intermediate) concentration at lower temperatures means that Criegee intermediate chemistry can play an enhanced role in SO2 oxidation in the atmosphere at lower temperatures.

17.
J Phys Chem A ; 124(39): 7911-7926, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32877605

ABSTRACT

The kinetics of the reactions of PO with O2 and PO2 with O3 were studied at temperatures ranging from ∼190 to 340 K, using a pulsed laser photolysis-laser induced fluorescence technique. For the reaction of PO + O2, there is evidence of both a two- and three-body exit channel, producing PO2 + O and PO3, respectively. Potential energy surfaces of both the PO + O2 and PO2 + O3 systems were calculated using electronic structure theory and combined with RRKM calculations to explain the observed pressure and temperature dependences. For PO + O2, at pressures typical of a planetary upper atmosphere where meteoric ablation of P will occur, the reaction is effectively pressure independent with a yield of PO2 + O of >99%; the rate coefficient can be expressed by log10(k, 120-500 K, cm3 molecule-1 s-1) = -13.915 + 2.470 log10(T) - 0.5020(log10(T))2, with an uncertainty of ±10% over the experimental temperature range (191-339 K). With increasing pressure, the yield of PO3 increases, reaching ∼90% at a pressure of 1 atm and T = 300 K. For PO2 + O3, k(188-339 K) = 3.7 × 10-11 exp(-1131/T) cm3 molecule-1 s-1, with an uncertainty of ±26% over the stated temperature range. Laser-induced fluorescence spectra of PO over the wavelength range 245-248 nm were collected and simulated using pgopher to obtain new spectroscopic constants for the ground and v = 1 vibrational levels of the X2Π and A2Σ+ states of PO.

18.
Nat Commun ; 11(1): 4521, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908140

ABSTRACT

Emitted from the oceans, iodine-bearing molecules are ubiquitous in the atmosphere and a source of new atmospheric aerosol particles of potentially global significance. However, its inclusion in atmospheric models is hindered by a lack of understanding of the first steps of the photochemical gas-to-particle conversion mechanism. Our laboratory results show that under a high humidity and low HOx regime, the recently proposed nucleating molecule (iodic acid, HOIO2) does not form rapidly enough, and gas-to-particle conversion proceeds by clustering of iodine oxides (IxOy), albeit at slower rates than under dryer conditions. Moreover, we show experimentally that gas-phase HOIO2 is not necessary for the formation of HOIO2-containing particles. These insights help to explain new particle formation in the relatively dry polar regions and, more generally, provide for the first time a thermochemically feasible molecular mechanism from ocean iodine emissions to atmospheric particles that is currently missing in model calculations of aerosol radiative forcing.

19.
J Phys Chem A ; 124(37): 7416-7426, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32816480

ABSTRACT

Furans are promising second generation biofuels with comparable energy densities to conventional fossil fuels. Combustion of furans is initiated and controlled to a large part by reactions with OH radicals, the kinetics of which are critical to understand the processes occurring under conditions relevant to low-temperature combustion. The reactions of OH radicals with furan (OH + F, R1), 2-methyl furan (OH + 2-MF, R2), and 2,5-dimethyl furan (OH + 2,5-DMF, R3) have been studied in this work over the temperature range 294-668 K at pressures between 5 mbar and 10 bar using laser flash photolysis coupled with laser-induced fluorescence (LIF) spectroscopy to generate and monitor OH radicals under pseudo-first-order conditions. Measurements at p ≤ 200 mbar were made in N2, using H2O2 or (CH3)3COOH radical precursors, while those at p ≥ 2 bar were made in He, using HNO3 as the radical precursor. The kinetics of reactions R1-R3 were observed to display a negative dependence on temperature over the range investigated, indicating the dominance of addition reactions under such conditions, with no significant dependence on pressure observed. Master equation calculations are in good agreement with the observed kinetics, and a combined parametrization of addition channels and abstraction channels for R1-R3 is provided on the basis of this work and previous shock tube measurements at higher temperatures. This work significantly extends the temperature range previously investigated for R1 and represents the first temperature-dependent measurements of R2 and R3 at temperatures relevant for atmospheric chemistry and low-temperature combustion.

20.
Phys Chem Chem Phys ; 22(17): 9448-9459, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32314758

ABSTRACT

The UV absorption cross-sections of the Criegee intermediate CH2OO, and kinetics of the CH2OO self-reaction and the reaction of CH2OO with I are reported as a function of pressure at 298 K. Measurements were made using pulsed laser flash photolysis of CH2I2/O2/N2 gas mixtures coupled with time-resolved broadband UV absorption spectroscopy at pressures between 6 and 300 Torr. Results give a peak absorption cross-section of (1.37 ± 0.29) × 10-17 cm2 at ∼340 nm and a rate coefficient for the CH2OO self-reaction of (8.0 ± 1.1) × 10-11 cm3 s-1, with no significant pressure dependence of the absorption cross-sections or the self-reaction kinetics over the range investigated. The rate coefficient for the reaction between CH2OO and I demonstrates pressure dependence over the range investigated, with a Lindemann fit giving k0 = (4.4 ± 1.0) × 10-29 cm6 s-1 and k∞ = (6.7 ± 0.6) × 10-11 cm3 s-1. The origins of IO in the system have been investigated, the implications of which are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...