Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(8): e0201489, 2018.
Article in English | MEDLINE | ID: mdl-30067850

ABSTRACT

Phenylketonuria is an inherited disease caused by mutations in the phenylalanine hydroxylase gene PAH. Different PAH pathogenic variants occur in different ethnic groups with various frequencies and the incidence of the disease itself varies from country to country. In the Caucasus region of Russia, some ethnoses are geographically and culturally isolated from each other. The tradition of monoethnic marriages may cause decreased genetic variability in those populations. In the Karachay-Cherkess Republic (Russia), the highest incidence of phenylketonuria in the world has been detected (1:850 newborns) in the region and 1:332 among the titular nation Karachays. Here, we showed that this phenomenon is due to the widespread prevalence of the p.Arg261* variant. Its allele frequency among Karachay patients with PKU was 68.4% and the carrier frequency in Karachays was 1:16 healthy individuals. PAH haplotype analysis showed a unique common origin. The founder haplotype and mutation "age" were estimated by analyzing the linkage disequilibrium between p.Arg261* and extragenic short tandem repeat loci. The p.Arg261* variant occurred in the Karachays population 10.2 ± 2.7 generations ago (275 ± 73 years) and its spread occurred in parallel with the growth of the population.


Subject(s)
Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Point Mutation , Gene Frequency , Haplotypes , Humans , Infant, Newborn , Linkage Disequilibrium , Pedigree , Phenylketonurias/epidemiology , Polymorphism, Genetic , Russia/epidemiology
2.
J Hum Genet ; 62(8): 789-795, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28405014

ABSTRACT

Although mutations in the GJB2 gene sequence make up the majority of variants causing autosomal-recessive non-syndromic hearing loss, few large deletions have been shown to contribute to DFNB1 deafness. Currently, genetic testing for DFNB1 hearing loss includes GJB2 sequencing and DFNB1 deletion analysis for two common large deletions, del(GJB6-D13S1830) and del(GJB6-D13S1854). Here, we report frequency in Russia, clinical significance and evolutionary origins of a 101 kb deletion, del(GJB2-D13S175), recently identified by us. In multiethnic cohort of 1104 unrelated hearing loss patients with biallelic mutations at the DFNB1 locus, the del(GJB2-D13S175) allele frequency of up to 0.5% (11/2208) was determined and this allele was shown to be predominantly associated with profound sensorineural hearing loss. Additionally, eight previously unpublished GJB2 mutations were described in this study. All patients carrying del(GJB2-D13S175) were of the Ingush ancestry. Among normal hearing individuals, del(GJB2-D13S175) was observed in Russian Republic of Ingushetia with a carrier rate of ~1% (2/241). Analysis of haplotypes associated with the deletion revealed a common founder in the Ingushes, with age of the deletion being ~3000 years old. Since del(GJB2-D13S175) was missed by standard methods of GJB2 analysis, del(GJB2-D13S175) detection has been added to our routine testing strategy for DFNB1 hearing loss.


Subject(s)
Connexins/genetics , Founder Effect , Hearing Loss/genetics , Mutation , Sequence Deletion , Child , Child, Preschool , Cohort Studies , Connexin 26 , Female , Gene Frequency , Genetic Testing , Genotype , Hearing Loss/epidemiology , Humans , Male , Russia/epidemiology
3.
Eur J Hum Genet ; 17(5): 664-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19172990

ABSTRACT

The rare malignant disorder autosomal recessive osteopetrosis (OPTB) is one of the most prevalent autosomal recessive diseases in the Chuvash Republic of Russia. The purpose of this study was to determine the underlying molecular cause of osteopetrosis in Chuvashiya and to reveal the factors causing the unusual high frequency of the disease in this region. Having assumed a founder effect, we performed linkage disequilibrium (LD) mapping of the OPTB locus at the TCIRG1 region and found a unique splice site mutation c.807+5G>A in all Chuvashian OPTB patients studied. We then analyzed the mutational change in mRNA and detected an intron insertion within the mutant transcript, resulting in a frameshift and premature stop-codon formation (p.Leu271AspfsX231). A decreased expression of the mutant transcript was also detected, which may have been the result of nonsense-mediated decay. Real-time qPCR and MLPA melting curve analysis-based systems were designed and used for c.807+5G>A mutation screening. In addition to analyzing the gene frequency in Chuvashiya, we also estimated three other populations in the Volga-Ural region (Mari, Udmurt and Bashkir). We found a 1.68% prevalence in Chuvashiya (calculated disease frequency, 1/3500 newborns) and a 0.84% in the Mari population (1/14 000 newborns). The haplotype analysis revealed that all OPTB cases in Chuvashians and Marians originated from a single mutational event and the age of the mutation in Chuvashians was estimated to be approximately 890 years.


Subject(s)
Founder Effect , Mutation , Osteopetrosis/genetics , Vacuolar Proton-Translocating ATPases/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Human, Pair 11/genetics , DNA Mutational Analysis , Female , Gene Frequency , Genes, Recessive , Haplotypes , Humans , Linkage Disequilibrium , Male , Microsatellite Repeats/genetics , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Polymorphism, Single-Stranded Conformational , RNA Splice Sites/genetics , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...